

CERTIFICATE OF ACCREDITATION

The ANSI National Accreditation Board

Hereby attests that

Advanced Mechanical Technology, Inc. 176 Waltham Street Watertown, MA 02472

Fulfills the requirements of

ISO/IEC 17025:2017

In the field of

CALIBRATION

This certificate is valid only when accompanied by a current scope of accreditation document. The current scope of accreditation can be verified at www.anab.org.

Jason Stine, Vice President

Expiry Date: 16 October 2027 Certificate Number: AC-2511

SCOPE OF ACCREDITATION TO ISO/IEC 17025:2017

Advanced Mechanical Technology, Inc.

176 Waltham Street
Watertown, MA 02472
Brian Price 617-926-6700 brianp@amtimail.com

CALIBRATION

ISO/IEC 17025 Accreditation Granted: 27 September 2025

Certificate Number: AC-2511 Certificate Expiry Date: 16 October 2027

Length – Dimensional Metrology

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
AMTI Knee Simulator ¹			Comparisons to
AP Linear Displacement	(-25 to 25) mm	0.6 mm	Digital Caliper
Internal/External Angular	(-30 to 30)°	0.3°	Digital Protractor
Displacement			
Flexion Angular	(-100 to 100)°	1°	Digital Protractor
Displacement			
Vertical Position Sensors	(-16.5 to 16.5) mm	0.1 mm	Gage Blocks
AMTI HIP Simulator ¹			Comparisons to
Abduction/Adduction Angular Displacement	(-20 to 20)°	0.3°	Digital Protractor
Internal/External Angular Displacement	(-20 to 20)°	0.3°	Digital Protractor
Flexion Angular Displacement	(-50 to 50)°	0.3°	Digital Protractor
Vertical Position Sensors	(-16.5 to 16.5) mm	0.1 mm	Gage Blocks

Length – Dimensional Metrology

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
AMTI VIVO Simulator ¹ Abduction/Adduction Angular Displacement	(-25 to 25)°	0.4°	Comparisons to Digital Protractor
AP Linear Displacement	(-24 to 24) mm	33 μm	Digital Indicator
ML Linear Displacement	(-24 to 24) mm	15 μm	Digital Indicator
Vertical Linear Displacement	(-22 to 22) mm	17 μm	Digital Indicator
Flexion/Extension Angular Displacement	(-30 to 150)°	0.3°	Digital Protractor
Internal/External Rotation	(-40 to 40)°	0.3°	Digital Protractor

Mass and Mass Related

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
AMTI Knee Simulator ¹			Comparisons to
Forces	Fx = Up to 600 N	1 N	Reference Load Cell
	Fy = Up to 600 N	1.7 N	
	Fz = Up to 4500 N	3.5 N	
Moments	$Mx = Up \text{ to } 45.2 \text{ N} \cdot \text{m}$	1.1 N·m	Reference Load Cell,
	$My = Up \text{ to } 45.2 \text{ N} \cdot \text{m}$	1.5 N·m	Length Standard Fixture
	$Mz = Up \text{ to } 17 \text{ N} \cdot \text{m}$	0.2 N·m	
Vertical Load Actuators	Up to 4 500 N	1.2 N	Reference Load Cell

Mass and Mass Related

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
AMTI HIP Simulator ¹			Comparisons to
Forces	Fx = Up to 180 N	0.1 N	Deadweights
	Fy = Up to 180 N	0.1 N	
	Fz = Up to 4 500 N	1.9 N	Reference Load Cells, Display
Moments – Differential	$\Delta Mx = Up \text{ to } 7.5 \text{ N} \cdot \text{m}$	0.1 N·m	Deadweights
	$My = Up \text{ to } 7.5 \text{ N} \cdot m$	0.1 N·m	
	$\Delta Mz = Up \text{ to } 9 \text{ N} \cdot m$	0.1 N·m	
Vertical Load Actuators	Up to 4 500 N	1.3 N	Reference Load Cell
AMTI VIVO Simulator ¹		A A	
Forces	$Fx = (-1\ 000\ to\ 1\ 000)\ N$	21 N	
	$Fy = (-1\ 000\ to\ 1\ 000)\ N$	21 N	Comparison to
	$Fz = (-4 \ 400 \ to \ 3 \ 500) \ N$	41 N	Multi-Axis Reference
]	Load/Torque Cell,
Moments	$Mx = (-80 \text{ to } 80) \text{ N} \cdot \text{m}$	1.2 N·m	Display
	$My = (-30 \text{ to } 30) \text{ N} \cdot \text{m}$	1.2 N·m	
	$Mz = (-40 \text{ to } 40) \text{ N} \cdot \text{m}$	0.6 N·m	
6-axis Load Cells			Comparison to
Forces	Fx = Up to 2 224 N	2.5 N	Single-Axis Reference
	Fy = Up to 2 224 N	2.6 N	Load Cell,
	Fz = Up to 8 896 N	2.4 N	Length Standard
6-axis Load Cells			Comparison to
Moments	$Mx = Up \text{ to } 113 \text{ N} \cdot \text{m}$	0.67 N·m	Single-Axis Reference
	$My = Up \text{ to } 113 \text{ N} \cdot \text{m}$	0.66 N·m	Load Cell,
	$Mz = Up \text{ to } 56.5 \text{ N} \cdot \text{m}$	0.33 N·m	Length Standard
6-axis Force Plates			Single-Axis Reference
Forces	Fx = Up to 4 448 N	2.3 N	Load Cell and
	Fy = Up to 4 448 N	2.4 N	ASTM F3109-23
	Fz = Up to 8 896 N	1.8 N	utilized in the calibration
			of this parameter.
			Deadweights and
6-axis Force Plates			ASTM F3109-23 utilized
Forces	Fz = Up to 890 N	0.6 N	in the calibration of
			this parameter.

ANSI National Accreditation Board

Mass and Mass Related

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
6-axis Force Plates			Single-Axis Reference
Moments	$Mx = Up \text{ to } 5 423 N \cdot m$	0.9 N·m	Load Cell and
	$My = Up \text{ to } 5 423 N \cdot m$	0.3 N·m	ASTM F3109-23 utilized
	$Mz = Up \text{ to } 2.712 \text{ N} \cdot \text{m}$	0.3 N·m	in the calibration of
			this parameter.
6-axis Force Plates			Deadweights and
Moments	$Mx = Up \text{ to } 542 \text{ N} \cdot \text{m}$	0.1 N·m	ASTM F3109-23 utilized
	$My = Up \text{ to } 542 \text{ N} \cdot \text{m}$	0.1 N·m	in the calibration of
		No. of the second secon	this parameter.

Thermodynamic

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Temperature Probes ¹	(20 to 45) °C	0.1 °C	Comparison to Thermoprobe

Calibration and Measurement Capability (CMC) is expressed in terms of the measurement parameter, measurement range, expanded uncertainty of measurement and reference standard, method, and/or equipment. The expanded uncertainty of measurement is expressed as the standard uncertainty of the measurement multiplied by a coverage factor of 2 (*k*=2), corresponding to a confidence level of approximately 95%.

Notes:

- 1. On-site calibration service is available for this parameter, since on-site conditions are typically more variable than those in the laboratory, larger measurement uncertainties are expected on-site than what is reported on the accredited scope.
- 2. Unless otherwise specified in the far-right column, the calibration method/procedure/method was developed internally.

