

The AMTI USB Device Software Development Kit

Reference Manual

Copyright © March 2017

Version 1.3.00

USB Device SDK

Programmers Reference Page 2 of 136

USB Device SDK

Programmers Reference Page 3 of 136

Notice

Copyright © 2010-2017 Advanced Mechanical Technology Inc. All rights reserved.

AMTI does not warrant that the AMTI USB Device DLL software will function properly in every hardware

software environment. This software is inherently complex, and users are cautioned to verify the results

of their work.

AMTI has tested the software and reviewed the documentation. AMTI MAKES NO WARANTY OR

REPRESENTATION, EITHER EXPRESSED OR IMPLIED, WITH RESPECT TO THIS SOFTWARE OR

DOCUMENTATION, THEIR QUALITY, PERFORMANCE, MERCHANTIBILITY, OR FITNESS FOR A PARTICULAR

PURPOSE. AS A RESULT, THIS SOFTWARE AND DOCUMENTATION ARE LICENSED “AS IS” AND YOU, THE

LICENSEE ARE ASSUMING THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE.

IN NO EVENT WILL AMTI BE LIABLE FOR DIRECT, INDIRECT, SPECIAL, OR CONSEQUENTIAL DAMAGES

ARISING OUT OF THE USE OR INABILITY TO USE THE SOFTWARE OR DOCUMENTATION, even if advised

of the possibility of such damages. In particular, AMTI shall have no liability for any programs or data

stored or used with AMTI software, including the costs of recovering such programs or data.

Redistribution and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

 Redistributions of source code must retain the above copyright notice, this list of conditions and the
above disclaimer.

 Redistributions in binary form must reproduce the above copyright notice, this list of conditions and
the above disclaimer listed in this license in the documentation and/or other materials
 provided with the distribution.

 Neither the name of the copyright holders nor the names of its contributors may be used to endorse or
promote products derived from this software without specific prior written permission.

AMTI Contact Information

Advanced Mechanical Technology
176 Waltham St.

Watertown, MA 02478
Phone (617)926-6700

Website www.amti.biz
Email helpdesk@amtimail.com

http://www.amti.biz/
mailto:helpdesk@amtimail.com

USB Device SDK

Programmers Reference Page 4 of 136

THE AMTI USB DEVICE SOFTWARE DEVELOPMENT KIT .. 1

REFERENCE MANUAL ... 1

NOTICE .. 3

AMTI CONTACT INFORMATION ... 3

1.0 INTRODUCTION ... 9

2.0 THE AMTI DIGITAL SIGNAL CONDITIONER ... 9

INTEGRATED DIGITAL HALL-EFFECT PLATFORMS ... 10

3.0 SOFTWARE DEVELOPMENT STRATEGY .. 10

4.0 LABVIEW COMPATIBILITY .. 11

5.0 DEFINITIONS ... 11

6.0 SOFTWARE SYSTEM OVERVIEW .. 12

6.1 UNDERSTANDING THE DIFFERENT FUNCTION TYPES .. 14

6.2 SELECTING A DEVICE ... 14

6.3 UNDERSTANDING THE SIGNAL CONDITIONER CHANNEL ORDER ... 14

6.4 APPLYING AND SAVING PARAMETERS ... 15

Saving Signal Conditioner Settings ... 16

Saving the DLL Configuration Settings ... 16

7.0 INITIALIZING AND CONFIGURING THE DLL ... 16

INITIALIZING THE DLL ... 16

THE DLL CONFIGURATION FILE ... 17

RE-INITIALIZING THE DLL ... 18

DLL CLEANUP ... 18

8.0 COLLECTING DATA ... 18

CHOOSING A DATA COLLECTION METHOD .. 18

CHOOSING THE DATA TRANSFER FUNCTION .. 19

SETTING THE DATA FORMAT .. 19

SETTING THE DATA PACKET SIZE ... 19

SETTING THE DATA UNITS .. 19

SETTING THE ACQUISITION RATE ... 20

ZEROING THE PLATFORM ... 20

STARTING ACQUISITION .. 20

STOPPING ACQUISITION .. 21

THE LIST OF DATA COLLECTION FUNCTIONS .. 21

9.0 USING THE SIGNAL CONDITIONER CONFIGURATION FUNCTIONS .. 21

9.1 THE LIST OF SIGNAL CONDITIONER CONFIGURATION FUNCTIONS ... 23

USB Device SDK

Programmers Reference Page 5 of 136

10.0 RETRIEVING THE SIGNAL CONDITIONER MECHANICAL LIMITS... 23

11.0 DETERMINING THE PLATFORM ORDER .. 24

MANUALLY SETTING THE DATASET PLATFORM ORDER .. 25

AUTO-ORDERING THE DATASET PLATFORM ORDER ... 25

12.0 USING THE GENLOCK FEATURE .. 26

13.0 USING THE EXTERNAL TRIGGER ... 27

14.0 USING THE SIGNAL CONDITIONER CALIBRATION FUNCTIONS ... 27

THE LIST OF SIGNAL CONDITIONER CALIBRATION FUNCTIONS ... 28

15.0 USING THE PLATFORM CALIBRATION FUNCTIONS ... 28

THE LIST OF PLATFORM CALIBRATION FUNCTIONS .. 29

16.0 DATA SYNCHRONIZATION AND THE SIGNAL CONDITIONERS ... 30

17.0 AMTI SMART PLATFORM AND SIGNAL CONDITIONER COMMUNICATION ... 30

18.0 TROUBLESHOOTING TIPS... 31

19.0 FUNCTION DEFINITIONS .. 31

20.0 DLL INITIALIZATION FUNCTION DEFINITIONS .. 32

FMDLLINIT ... 32

FMDLLISDEVICEINITCOMPLETE .. 33

FMDLLSETUPCHECK ... 34

FMDLLSETUSBPACKETSIZE ... 35

FMDLLGETDEVICECOUNT ... 36

FMDLLSELECTDEVICEINDEX ... 37

FMDLLGETDEVICEINDEX ... 38

FMDLLSAVECONFIGURATION ... 39

FMDLLSHUTDOWN ... 40

21.0 DATA COLLECTION FUNCTION DEFINITIONS .. 41

FMBROADCASTRUNMODE .. 41

FMDLLGETRUNMODE ... 42

FMGETRUNMODE ... 43

FMBROADCASTGENLOCK ... 44

FMDLLGETGENLOCK .. 45

FMBROADCASTACQUISITIONRATE ... 46

FMDLLGETACQUISITIONRATE .. 47

FMGETACQUISITIONRATE .. 48

FMBROADCASTSTART ... 49

FMBROADCASTSTOP ... 50

FMBROADCASTZERO .. 51

USB Device SDK

Programmers Reference Page 6 of 136

FMDLLPOSTDATAREADYMESSAGES .. 52

FMDLLPOSTWINDOWMESSAGES ... 53

FMDLLPOSTUSERTHREADMESSAGES .. 54

FMDLLSETDATAFORMAT .. 55

FMDLLTRANSFERFLOATDATA .. 56

FMDLLGETTHEFLOATDATALBVSTYLE ... 58

22.0 APPLY AND SAVE FUNCTION DEFINITIONS .. 60

FMBROADCASTRESETSOFTWARE ... 60

FMRESETSOFTWARE ... 61

FMBROADCASTSAVE ... 62

FMSAVE ... 63

FMAPPLYLIMITED... 64

23.0 SIGNAL CONDITIONER CONFIGURATION FUNCTION DEFINITIONS .. 65

FMSETCURRENTGAINS .. 65

FMGETCURRENTGAINS ... 66

FMSETCURRENTEXCITATIONS ... 67

FMGETCURRENTEXCITATIONS .. 68

FMSETCHANNELOFFSETSTABLE .. 69

FMGETCHANNELOFFSETSTABLE .. 71

FMSETCABLELENGTH .. 72

FMGETCABLELENGTH ... 73

FMSETMATRIXMODE ... 74

FMGETMATRIXMODE .. 75

FMSETPLATFORMROTATION .. 76

FMGETPLATFORMROTATION.. 77

24.0 SIGNAL CONDITIONER MECHANICAL LIMITS FUNCTION DEFINITIONS ... 78

FMUPDATEMECHANICALMAXANDMIN ... 78

FMGETMECHANICALMAXANDMIN ... 79

FMUPDATEANALOGMAXANDMIN .. 80

FMGETANALOGMAXANDMIN ... 81

25.0 PLATFORM ORDERING FUNCTION DEFINITIONS .. 82

FMDLLSETPLATFORMORDER ... 82

FMBROADCASTPLATFORMORDERINGTHRESHOLD... 83

FMDLLSTARTPLATFORMORDERING ... 84

FMDLLISPLATFORMORDERINGCOMPLETE .. 85

FMDLLCANCELPLATFORMORDERING .. 86

26.0 SIGNAL CONDITIONER CALIBRATION FUNCTION DEFINITIONS .. 87

FMGETPRODUCTTYPE ... 87

FMGETAMPLIFIERMODELNUMBER ... 88

USB Device SDK

Programmers Reference Page 7 of 136

FMGETAMPLIFIERSERIALNUMBER ... 89

FMGETAMPLIFIERFIRMWAREVERSION ... 90

FMGETAMPLIFIERDATE ... 91

FMGETGAINTABLE ... 92

FMGETEXCITATIONTABLE .. 93

FMGETDACGAINSTABLE... 94

FMGETDACOFFSETTABLE ... 95

FMSETDACSENSITIVITYTABLE .. 96

FMGETDACSENSITIVITIES .. 97

FMGETADREF... 98

27.0 PLATFORM CALIBRATION FUNCTION DEFINITIONS ... 99

FMSETPLATFORMDATE ... 99

FMGETPLATFORMDATE .. 100

FMSETPLATFORMMODELNUMBER .. 101

FMGETPLATFORMMODELNUMBER ... 102

FMSETPLATFORMSERIALNUMBER ... 103

FMGETPLATFORMSERIALNUMBER .. 104

FMSETPLATFORMLENGTHANDWIDTH ... 105

FMGETPLATFORMLENGTHANDWIDTH ... 106

FMSETPLATFORMXYZOFFSETS ... 107

FMGETPLATFORMXYZOFFSETS .. 108

FMSETPLATFORMXYZEXTENSIONS .. 109

FMGETPLATFORMXYZEXTENSIONS ... 110

FMSETPLATFORMCAPACITY ... 111

FMGETPLATFORMCAPACITY ... 112

FMSETPLATFORMBRIDGERESISTANCE .. 113

FMGETPLATFORMBRIDGERESISTANCE ... 114

FMSETINVERTEDSENSITIVITYMATRIX ... 115

FMGETINVERTEDSENSITIVITYMATRIX ... 116

28.0 SIGNAL CONDITIONER HARDWARE FUNCTION DEFINITIONS ... 117

FMSETBLINK ... 117

FMRESETHARDWARE .. 118

FMBROADCASTRESETUSB ... 119

29.0 SAMPLE CODE ... 120

DLL INITIALIZATION USING A SLEEP STATEMENT .. 120

DLL INITIALIZATION USING AN MFC TIMER .. 121

THE ACQUISITION RATE BEING BROADCAST TO THE SIGNAL CONDITIONERS ... 122

THE PLATFORMS BEING ZEROED ... 122

STARTING ACQUISITION .. 122

STOPPING ACQUISITION .. 122

USB Device SDK

Programmers Reference Page 8 of 136

AN MFC DIALOG CLASS BEING SETUP TO DO DATA COLLECTION USING WINDOWS MESSAGING .. 123

WINDOWS MESSAGING BEING SET UP TO DO DATA COLLECTION .. 123

COLLECTING DATA WHEN A WINDOWS MESSAGE IS RECEIVED .. 124

USER THREAD MESSAGING BEING SET UP TO DO DATA COLLECTION ... 125

COLLECTING DATA WHEN A USER THREAD MESSAGE IS RECEIVED .. 126

DOWNLOADING SOME PARAMETERS ... 127

RETRIEVING SOME PARAMETERS ... 128

AUTO-ORDERING THE DATASET PLATFORM ORDER USING AN MFC TIMER ... 129

APPENDIX A – INTEGRATION OF THE AMTI OPTIMA SIGNAL CONDITIONER INTO THE USB DEVICE SDK 130

INTRODUCTION .. 130

THE OPTIMA BINARY CALIBRATION FILE ... 130

HOW THE AMTI USB DEVICE DLL INITIALIZES AN OPTIMA SIGNAL CONDITIONER ... 131

GEN 5 COMPATIBILITY .. 131

OPTIMA ONLY FUNCTIONS .. 132

FMBROADCASTCHECKOPTIMA .. 133

FMOPTIMAGETSTATUS ... 134

FMOPTIMADOWNLOADCALFILE ... 135

FMISOPTIMADOWNLOADCOMPLETE ... 136

USB Device SDK

Programmers Reference Page 9 of 136

1.0 Introduction

The AMTI USB Device Software Development Kit (SDK) is designed to assist third party vendors

in integrating one or more AMTI digital USB signal conditioners into their applications. The

AMTI SDK allows vendors to communicate with AMTI hardware through a USB 2.0 interface.

The SDK consists of a regular dynamic-link library (DLL) named AMTIUSBDevice.dll, a library file

named AMTIUSBDevice.lib, and a header file named AMTIUSBDevice.h. To get started, these

three files should be included in the project as when integrating any regular DLL.

The DLL is written in Visual C++, using Visual Studio 2010. It is configured for both the Win 32

and Win 64 platforms, and is compatible with Windows 7 Wow64. The reader is expected to be

familiar with Dynamic Link Libraries and their uses.

2.0 The AMTI Digital Signal Conditioner

The overall function of the AMTI Digital Signal Conditioner is to condition data from six strain

gauge inputs and output the results as six analog channels and/or a six-channel digital data

stream. The analog outputs are high level and suitable as inputs to a multi-channel Analog to

Digital Converter (ADC). The digital data are transmitted to a host Personal Computer (PC) via a

Universal Serial Bus (USB) connection. The USB port is also used to send and receive control

and status information used by the signal conditioner.

The overall signal conditioner functionality can be divided as follows:

 1. Provide analog signal conditioning for six strain gauge inputs including production of six

independently selectable strain gauge excitation voltages, bridge balancing with independently

selectable offsets, filtering and amplification at independently selectable gains.

2. Perform periodic sampling of the six conditioned analog signals at selectable rates.

3. Perform numerical processing of digitized signals including conversion to engineering units.

4. Convert numerically processed data to high-level analog signals suitable for an ADC via a

Digital to Analog Converter (DAC) and analog signal conditioning.

5. Provide an industry standard USB port for data transmission and reception.

USB Device SDK

Programmers Reference Page 10 of 136

6. Provide non-volatile memory for the storage of calibration and configuration data.

7. Provide for the reading of calibration coefficients and other data from AMTI Smart Platforms

equipped with Read Only Memory (ROM).

The above functions are implemented by the signal conditioner with analog circuitry and two

MCU’s. A Silicon Laboratories C8051F120A mixed signal MCU with FLASH and its peripheral

circuits perform all functions except the USB port implementation. A Cypress Semiconductor

Corporation CY7C68013A-128AC (EZ-USB FX2LP) single-chip USB MCU implements the industry

standard USB port.

Integrated Digital Hall-effect Platforms

The AMTI SDK and digital DLL support integrated Hall-effect digital platforms in addition to the

digital signal conditioners described above. These platforms contain AMTI Optima digital logic

built into the platform hardware. Some of the strain-gauge functionality and analog output

functions supported by the SDK are not applicable to these integrated platforms, and calls to

certain functions will have no effect on them. Nevertheless, most user application software

written to support AMTI digital signal conditioners can be used unaltered to manage and read

data from AMTI integrated Hall-effect platforms.

3.0 Software Development Strategy

When considering integrating the AMTI SDK with an application there are two options: full

integration or partial integration. Full integration involves integrating most of the features of

this SDK into the application; this gives the application full control of the signal conditioners.

Partial integration involves integrating only the data collection portion of the SDK.

The AMTI System Configuration program is a utility program which ships with every AMTI signal

conditioner. It is used to set up and configure both the DLL and the signal conditioners. For a

partial integration strategy, use the AMTI System Configuration program for signal conditioner

setup and configuration, and then only integrate the data collection processes into the third

party application. Doing this requires only familiarity with the following sections: Initializing

and Configuring the DLL, and Data Collection. For many users this will be the way to go.

USB Device SDK

Programmers Reference Page 11 of 136

4.0 LabView Compatibility

When integrating the AMTI digital SDK with LabView, AMTI recommends using the partial

integration strategy described in section 3.0. Use the AMTI System Configuration program for

setting up and configuring the DLL and signal conditioners, and then integrating only the data

collection processes into the LabView application.

AMTI recommends using the polling method of data collection. For data transfer, the

fmDLLGetTheFloatDataLBVStyle function should be used.

AMTI does provide starter source code for a simple LabView data collection program.

The recommended data collection method above has been tested for LabView compatibility.

5.0 Definitions

AD – Analog to digital conversion

DAC – Digital to analog conversion

MCU – microcontroller unit

Platform – In this manual the word platform may also be substituted with transducer, load cell,

any six-channel strain gage multi-axis measurement device.

Electrical range – In this manual electrical range is the maximum and minimum measurement

capacity of the signal conditioner expressed as engineering units.

Analog output range – The analog output range of an AMTI signal conditioner is ±5 volts.

When we discuss the analog output range in this manual we are frequently referring to it in

engineering units.

USB Device SDK

Programmers Reference Page 12 of 136

6.0 Software System Overview

The diagram below illustrates the relationship between the AMTI USB Device DLL and the rest

of the system. The DLL handles all communication between the third party application and the

Signal Conditioner Cypress device drivers. When initialized, the DLL will find and communicate

with each signal conditioner which is connected to the PC through a USB 2.0 port.

Figure 1 - Software System Overview

Third Party Software Application

Cypress USB

Device

Driver

AMTI USB Device DLL

Cypress USB

Device

Driver

Cypress USB

Device

Driver

AMTI Signal

Conditioner

AMTI Signal

Conditioner

AMTI Signal

Conditioner

USB 2.0

USB Device SDK

Programmers Reference Page 13 of 136

As illustrated in Figure 2, the DLL creates a thread to act as a liaison between the third party

application and all of the AMTI signal conditioners. The DLL spawns additional threads to

service each connected signal conditioner.

Figure 2 – Software System Architecture

Third Party Application

AMTI USB DLL User Interface

Main DLL Thread

This thread acts as a liaison between the application and

individual signal conditioners. It broadcasts commands,

and waits for responses. It adds elasticity to the system

by running independently of the application. It acts as a

gathering place for information before transferring it.

Data Collection

When a Signal Conditioner thread

receives a full packet of data it sends a

message to this thread. When all Signal

Conditioner threads have sent a message,

this thread takes a packet from each,

combines and stores the data in a circle

buffer. Then it waits to be polled for data

or sends a message to the third party

application saying data is ready

Signal Conditioner Thread

The DLL creates a thread

to service each attached

signal conditioner. This

thread performs all

communication with

the signal conditioner

and contains a short

queue to prevent

commands from over-

writing each other.

Circle Buffer

The Signal Conditioner

Thread polls the Cypress

driver for a data packet.

When it gets one, it stores

the data here and posts a

message to the Main DLL

thread.

Signal Conditioner Cypress Driver

Signal Conditioner Thread

The DLL creates a thread

to service each attached

signal conditioner. This

thread performs all

communication with

the signal conditioner

and contains a short

queue to prevent

commands from over-

writing each other

Circle Buffer

The Signal Conditioner

Thread polls the Cypress

driver for a data packet.

When it gets one, it stores

the data here and posts a

message to the Main DLL

thread.

Signal Conditioner Cypress Driver

USB Device SDK

Programmers Reference Page 14 of 136

6.1 Understanding the Different Function Types

There are three different types of functions in the SDK. The function prefix distinguishes them.

Function Prefix Function Prefix Meaning

fmBroadcast The fmBroadcast prefix indicates the function is a global command. The

function broadcasts the command to all currently connected signal

conditioners.

fmDLL The fmDLL prefix indicates the function has to do with the current

configuration settings of the DLL, not the signal conditioners.

fm The fm prefix, excluding the fmBroadcast and fmDLL types, is concerned
with only one signal conditioner. In order to communicate with a specific
signal conditioner the function fmDLLSelectDeviceIndex must be called to
select that signal conditioner. The selected signal conditioner remains
selected until another signal conditioner is selected, or the DLL terminates.

6.2 Selecting a Device

Before communicating with a specific signal conditioner, the device must be selected first. The

fmDLLSelectDeviceIndex function selects the signal conditioner by its device index. Once a

signal conditioner has been selected it be accessed through of the fm prefix type functions.

The device indices are ordered from 0 to the number of signal conditioners minus one. They are

always ordered in the platform data collection order stored in the DLL configuration file. Use

fmDLLGetDeviceCount to know how many devices are connected.

To find out what signal conditioner or platform is associated with a particular index, call

fmGetAmplifierSerialNumber and other amplifier and platform identification functions.

6.3 Understanding the Signal Conditioner Channel Order

An AMTI signal conditioner is a 6-channel data collection device. It collects data from force

plates which measure forces and moments. The channel order is always the three forces,

followed by the three moments.

USB Device SDK

Programmers Reference Page 15 of 136

Fx – The force vector along the x axis of a platform

Fy – The force vector along the y axis of a platform

Fz – The force vector along the z axis of a platform

Mx – The moment around the x axis of a platform

My – The moment around the y axis of a platform

Mz – The moment around the z axis of a platform

Channel Forces Moments

Index 0 1 2 3 4 5

Row Fx Fy Fz Mx My Mz

When uploading or downloading parameters the channel order as shown in the above table is

always maintained. If we are uploading or downloading a table with multiple entries for each

channel the channel order is still maintained as in the following table where each channel has

three entries. The table is always organized in row, column order.

Index 0 1 2 3 4 5

Row 1 Fx Fy Fz Mx My Mz

Index 6 7 8 9 10 11

Row 2 Fx Fy Fz Mx My Mz

Index 12 13 14 15 16 17

Row 3 Fx Fy Fz Mx My Mz

6.4 Applying and Saving Parameters

There are multiple functions for applying and saving parameters. To avoid confusion they are

each described below.

USB Device SDK

Programmers Reference Page 16 of 136

Applying Signal Conditioner Settings

When new calibration tables or configuration parameters are downloaded to the signal
conditioners they are not automatically applied. The functions fmBroadcastResetSoftware and
fmResetSoftware are used to apply parameters to the signal conditioner hardware. The
exceptions to this rule are the Start, Stop, Zero, Blink and Set acquisition rate commands.
Additionally, these two functions do not apply to the DLL configuration settings. The two reset
software functions require a time delay after being called. The internal signal conditioner
software resets itself and the signal conditioner will not accept commands while resetting. It is
recommended that all of configuration changes be made, and then a Reset function be called
when done. The reset software functions do not save the parameter changes to permanent
flash memory.

Saving Signal Conditioner Settings

Each signal conditioner maintains its own calibration tables, platform calibration tables, and

current configuration settings all within its own internal flash memory. To save the current

configuration settings to permanent flash memory the functions fmBroadcastSave or fmSave

must be used.

Saving the DLL Configuration Settings

To save the current DLL settings, call fmDLLSaveConfiguration. For a list of DLL configuration

settings, please see the section titled The DLL Configuration File in Section 7.

7.0 Initializing and Configuring the DLL

 Initializing the DLL

The first DLL function called in an application will always be fmDLLInit.

The fmDLLInit function does the following:

1) The DLL searches for the signal conditioners. When a signal conditioner is found it uploads

all of the signal conditioner parameters and stores them in local memory. These parameters

include both calibration tables and configuration settings. It does this so it can retrieve

parameters instantly without having to query the signal conditioner. Additionally all future

parameter changes update both DLL memory and signal conditioner memory.

USB Device SDK

Programmers Reference Page 17 of 136

2) The DLL then loads the configuration file. It compares the saved configuration to the current

configuration. It checks to see that the same number of signal conditioners is present as the

last time it was run. It compares the serial numbers and makes sure the serial numbers match.

It sets up the data collection order of the platforms to insure the data is presented in the same

platform order as saved in the last configuration. If some signal conditioners are not present

the platform order of the others will be maintained.

3) When the DLL has completed initializing it will set a flag. The flag can be checked by calling

fmDLLIsDeviceInitComplete.

4) After the DLL has finished initializing call fmDLLSetupCheck. That will return an status value

to alert the application to configuration differences between the current configuration and the

last saved configuration.

 The DLL Configuration File

The DLL configuration file is AMTIUsbSetup.cfg. This file is located in the C:\AMTI\CFG folder.

The configuration file maintains the last saved DLL configuration settings listed in the table

below. In addition to this list it maintains the data collection order of the platforms.

Table 1 – The DLL configuration Settings

Global Settings Description , Range, or possible values

The configuration file version number 101 (current version)

The signal conditioner count 0-16 (range of possible values)

The acquisition rate 10-2000 (range of possible values)

The run mode 0-4 (range of possible values)

The genlock state 0-2 (range of possible values)

Signal Conditioner Settings Always saved in data collection order

Signal conditioner serial number

Signal conditioner model name

Platform serial number

Platform model name

The acquisition rate, run mode and genlock settings stored in the configuration file are the last

broadcast settings downloaded before the configuration file was last saved. It does not mean

that all of the signal conditioners are configured to these settings. To be sure all signal

USB Device SDK

Programmers Reference Page 18 of 136

conditioners are configured to the same settings, it is recommended that the desired settings

be re-broadcast after the DLL has initialized.

The function fmDLLSaveConfiguration saves the DLL configuration file. It is not automatically

updated upon closing the DLL.

Re-initializing the DLL

Use the fmDLLInit function to reinitialize the DLL. Simply call it again and it will re-initialize.

The reason to do this is to find signal conditioners that were either unplugged or added after

the application has started.

If a signal conditioner is removed while the application is running, the DLL should be re-

initialized. It will no longer function correctly if a signal conditioner is not present.

DLL Cleanup

In order to shut down the DLL, fmDLLShutDown must be called. Calling this function

terminates all running threads and performs cleanup for the DLL. After calling this command

adequate time must be allotted for cleanup before closing the application. This time increases

per signal conditioner, however 500 msec should be more than adequate.

If the DLL will be reinitialized to search for additional signal conditioners and not terminating

the application just call fmDLLInit again. Do not call fmDLLShutDown.

 8.0 Collecting Data

This section describes the decisions which must be made to set up the data acquisition process.

Each function presents data acquisition options which must be considered. Consider each one

and configure the DLL accordingly.

Choosing a Data Collection Method

There are three ways to collect digital data:

1. The first is polling; simply poll the DLL continuously to see if data is available. The data

transfer function will either return a pointer to data, or return 0 if no new data are available.

USB Device SDK

Programmers Reference Page 19 of 136

2. The second is to have the DLL post a message to the application main window every time

data is ready. Upon receiving the message the application can use the data transfer function to

receive the data. To set up for windows messaging use the functions

fmDLLPostDataReadyMessages and fmDLLPostWindowMessages.

3. The third is to have the DLL post a message to a user thread every time data is ready. Upon

receiving the message the application can use the data transfer function to receive the data. To

set up for user thread messaging use the functions fmDLLPostDataReadyMessages and

fmDLLPostUserThreadMessages.

Note: The DLL cannot post data ready messages to both a user thread and a window at the

same time.

Choosing the Data Transfer Function

The data transfer functions check to see if data is available and if so return the data. There are

two data transfer functions. One is designed for integration with C/C++ programs, the other is

recommended for Labview.

The function for C/C++ programming is fmDLLTransferFloatData.

The function for Labview programming is fmDLLGetTheFloatDataLBVStyle.

Setting the Data Format

There are two supported data formats. The application can receive datasets in six-channel or

eight-channel format. A six-channel dataset will consist solely of the force and moment

channels. An eight-channel dataset will have two additional channels, a dataset counter and a

trigger state. To set the data format call fmDLLSetDataFormat.

Setting the Data Packet Size

The DLL collects data in packets. Currently there is only one packet size and that is 512 bytes.

To set the packet size call fmDLLSetUSBPacketSize and set it to 512.

Setting the Data Units

There are two ways to receive data from an AMTI signal conditioner. One is through the digital

outputs; the other is through analog outputs. For digital outputs the unit choices are bits,

USB Device SDK

Programmers Reference Page 20 of 136

English units, or metric units. For analog outputs the choices are fully conditioned and MSA 6

compatible. To set the data collection type call fmBroadcastRunMode.

Setting the Acquisition Rate

The DLL can collect digital data at different rates. The function fmBroadcastAcquisitionRate is

called to set the acquisition rate. The new acquisition rate will take affect with the next Start

command. Different signal conditioner models may support different acquisition rates; please

refer to the signal conditioner hardware documentation to see the supported rates.

Alternatively, data collection may be clocked using an external genlock signal. See section 12

Using the Genlock Feature for more information. If not using the genlock feature, the

function fmBroadcastGenlock should be called to make sure it is turned off.

Zeroing the Platform

Before collecting data the platform should be zeroed in an unloaded state. The function

fmBroadcastZero sends a zero command to all of the signal conditioner/platform pairs. This

function may be called before or during acquisition.

The fmBroadcastZero function performs both a hardware zero and software tare on the

platform.

Starting Acquisition

To start data acquisition the function fmBroadcastStart must be called. This function sends a

start command to all connected signal conditioners.

This function only starts digital data collection. The analog outputs of the signal conditioners

are always active.

When this function has been called additional start commands will be ignored until a stop

command has been received.

Data collection will be automatically stopped if any other commands are sent to the signal

conditioners after the start command has been broadcast. This is necessary to maintain the

integrity of the synchronization between signal conditioners. The exception to this is the

broadcast zero command. The zero command is the only command which may be broadcast

during data collection that will not stop data collection.

USB Device SDK

Programmers Reference Page 21 of 136

Stopping Acquisition

To stop data acquisition, call the function fmBroadcastStop.

Data collection will be automatically stopped if any other DLL commands are sent to the signal

conditioners after the start command has been broadcast. This is necessary to maintain the

integrity of the synchronization scheme between signal conditioners.

The List of Data Collection Functions

fmDLLSetUSBPacketSize

fmBroadcastRunMode

fmDLLGetRunMode

fmGetRunMode

fmBroadcastGenlock

fmDLLGetGenlock

fmBroadcastAcquisitionRate

fmDLLGetAcquisitionRate

fmGetAcquisitionRate

fmBroadcastStart

fmBroadcastStop

fmBroadcastZero

fmDLLPostDataReadyMessages

fmDLLPostWindowMessages

fmDLLPostUserThreadMessages

fmDLLSetDataFormat

fmDLLTransferFloatData

fmDLLGetTheFloatDataLBVStyle

9.0 Using the Signal Conditioner Configuration Functions

In order to use a signal conditioner it must be configured for use. The following table describes

the configuration choices which must be made. Consult the signal conditioner user manual for

additional information.

USB Device SDK

Programmers Reference Page 22 of 136

Table 2 - AMTI Signal Conditioner Configuration Parameter List

Current Gain For each channel an amplifier gain must be selected.

The choices are 500, 1000, 2000 or 4000.

Current Excitation For each channel a strain gauge excitation voltage must be selected.

The choices are 2.5, 5.0, or 10.0 volts.

Matrix Mode The signal conditioner can either use the full platform calibration matrix

when processing data or just the main diagonal terms of the matrix.

Channel Offset For each channel a channel offset can be set. The channel offset allows

the mechanical range of the signal conditioner to be offset by ± 99 %.

It must be entered as a value between -0.99 and 0.99.

The default setting is zero (no offset).

Platform Rotation A single value entered in degrees instructing the platform to perform a

coordinate transformation on the data. The default is zero (unrotated).

Cable Length A single value giving the length of the cable between the platform and

the signal conditioner in feet (1 foot = 30.5cm).

DAC Sensitivities When using analog output in fully-conditioned mode, a DAC conversion

value should be entered for each channel. It is used for scaling the

analog outputs to a user supplied conversion factor. This factor is only

applied when the analog outputs are set to fully conditioned mode.

Run Mode A single value selecting the output modes of the signal conditioner. For

digital outputs the choices are metric, English, or bits. For analog

outputs the choices are fully conditioned or MSA 6 compatible.

Acquisition Rate The digital data collection rate of the signal conditioner represented in

datasets per second (Hz).

Genlock A single value turning genlock mode on or off. The default is off.

Product Type A read-only parameter representing the product type of the signal

conditioner. Current product types are: 100 for a Gen 5; 300 for an

Optima; and 400 for an integrated digital Hall-effect platform.

USB Device SDK

Programmers Reference Page 23 of 136

The following is the list of functions used to configure the signal conditioner

9.1 The List of Signal Conditioner Configuration Functions

fmSetCurrentGains

fmGetCurrentGains

fmSetCurrentExcitations

fmGetCurrentExcitations

fmSetMatrixMode

fmGetMatrixMode

fmSetChannelOffsetsTable

fmGetChannelOffsetsTable

fmSetPlatformRotation

fmGetPlatformRotation

fmSetCableLength

fmGetCableLength

fmSetDACSensitivityTable

fmGetDACSensitivities

fmDLLSetUSBPacketSize

fmBroadcastRunMode

fmDLLGetRunMode

fmGetRunMode

fmBroadcastGenlock

fmDLLGetGenlock

fmBroadcastAcquisitionRate

fmDLLGetAcquisitionRate

fmGetAcquisitionRate

fmGetProductType

10.0 Retrieving the Signal Conditioner Mechanical Limits

All force platforms have mechanical capacities which may not be exceeded. Each channel of

the signal conditioner has an electrical range. Depending on the configuration the electrical

range is mapped to different different mechanical ranges.

USB Device SDK

Programmers Reference Page 24 of 136

When a signal conditioner is first turned on it calculates the mechanical limits for each channel.

The function fmGetMechanicalMaxAndMin returns the mechanical limits of the signal

conditioner in engineering units.

If the functions fmBroadcastResetSoftware or fmResetSoftware are called to apply settings,

the mechanical range is recalculated. To retrieve the recalculated mechanical range from the

signal conditioner the function fmUpdateMechanicalMaxAndMin is required to upload the

recalculated mechanical limits to the DLL. The function fmGetMechanicalMaxAndMin may

then be called to retrieve the limits.

The digital output range of the signal conditioner is always the same as the mechanical range,

not the platform capacity. The analog output range expressed in engineering units is always

the same as the digital output range except when the analog output is in fully conditioned

mode.

For a signal conditioner whose analog output is in fully conditioned mode, the output range is

scaled to a user supplied digital to analog conversion factor. The output range expressed in

engineering units will always be either less than or equal to the mechanical range.

The analog output range in engineering units is calculated when the signal conditioner is first

turned on. The function fmGetAnalogMaxAndMin returns the analog output range in

engineering units. This data returned by this function is indeterminate if the signal conditioner

is not running in analog fully conditioned mode.

If the functions fmBroadcastResetSoftware or fmResetSoftware are called to apply settings the

analog output range in engineering units is recalculated. To retrieve the recalculated range, the

function fmUpdateAnalogMaxAndMin is required to upload the recalculated limits to the DLL.

The function fmGetAnalogMaxAndMin may then be called to retrieve the new limits.

11.0 Determining the Platform Order

When more than one platform is installed it is important the the data are always presented in

the same order. A dataset consists of a single sample of data concatenated together from each

platform. The question is which platform's data should be presented first in each dataset.

USB Device SDK

Programmers Reference Page 25 of 136

The DLL allows the user to set and save the dataset platform order in the DLL configuration file.

That way the dataset platform order is remembered from one session to the next. The function

fmDLLSaveConfiguration saves the DLL configuration file.

There are two ways to set the dataset platform order. The platform order may be set manually

or automatically.

Manually Setting the Dataset Platform Order

To manually set the platform order, call the function fmDLLSetPlatformOrder. The identity of
the signal conditioner/platform pairs must be known to the calling program.

Auto-ordering the Dataset Platform Order

The second method for setting the dataset platform order is called auto-ordering. In this

scenario a user steps on the platforms in the desired dataset platform order. Four functions are

used: fmBroadcastPlatformOrderingThreshold, fmDLLStartPlatformOrdering,

fmDLLIsPlatformOrderingComplete, and fmDLLCancelPlatformOrdering.

For auto-ordering, the function fmBroadcastPlatformOrderingThreshold is called to set a load

detection threshold in the DLL. When the function fmDLLStartPlatformOrdering is called the

DLL goes into listen mode to detect the order in which the load detection threshold is triggered

by a person stepping on each platform in the desired order. The function

fmDLLIsPlatformOrderingComplete, may then be called to confirm the platform ordering is

complete. The function fmDLLCancelPlatformOrdering may be called at any time to cancel the

operation.

The required steps for completing the platform auto-ordering are:

A. Call fmDLLSetDataFormat and set the format to parameter to 0 (6 channel collection).

B. Call fmBroadcastRunMode to collect using mode 4 (digital data as bits).

C. Call fmBroadcastPlatformOrderingThreshold and set an appropriate platform load

detection threshold in bits (full scale bit range is ± 16384).

D. Call fmBroadcastResetSoftware to apply the changes.

E. Use a Sleep command (at least 250 msec) to allow the signal conditioners time to reset.

USB Device SDK

Programmers Reference Page 26 of 136

F. Call fmBroadcastZero to zero the unloaded platforms.

G. Call fmDLLStartPlatformOrdering to put the DLL into listening mode.

H. Call fmBroadcastStart to start data collection. The DLL will now check all incoming platform

data to detect the order in which the platform threshold is crossed. It will not stop listening

until all platforms have had their threshold crossed. Call fmDLLCancelPlatformOrdering to

cancel the process.

I. Call fmDLLIsPlatformOrderingComplete to detect if the process has completed. We suggest

either using a timer or a sleep function to periodically check for process completion.

J. Once the process has completed remember that this has changed the device index order of

the signal conditioners. Loop through each device and request the serial numbers to figure out

the new order.

K. Call fmDLLSaveConfiguration if to maintain the new order when the DLL is next initialized.

12.0 Using the Genlock Feature

Genlock is a common technique where the output of one source is used to synchronize multiple

devices. AMTI digital signal conditioners have a genlock input port, which is designed to receive

a clocking pulse that will cause a dataset to be recorded. When genlock is on, the signal

conditioner will collect a single dataset on either the rising or falling edge of an analog input

signal, usually a square wave of some sort. The function fmBroadcastGenlock is used to set the

genlock mode of all connected signal conditioners.

The low state of the genlock input must be less than one volt. The high state must be greater

than 3 volts but never more than 10 volts. The duration in either state must be greater than 20

microseconds to be detected. The genlock signal must be sent to all connected signal

conditioners.

Before reading data using genlock, the signal conditioners should have their nominal acquisition

rates set to a value as high or higher than the expected genlock pulse rate. Use the

fmBroadcastAcquisitionRate to set the nominal acquisition rate.

The fmBroadcastStart function can be called before or after the genlock signal is started.

USB Device SDK

Programmers Reference Page 27 of 136

13.0 Using the External Trigger

AMTI signal conditioners can use the genlock port as a trigger input port. In the eight-channel

data mode of digital output one of the channels is the trigger signal. The function

fmDLLSetDataFormat determines whether the DLL delivers the full 8 channels or only the 6

force and moment channels. To see the trigger signal the DLL must be set up to deliver the full

eight channels of data. A trigger channel value of 1 indicates the trigger input is high, and a

value of 0 indicates the trigger input is low.

The low state of the trigger input must be less than one volt. The high state must be greater
than 3 volts but never more than 10 volts. The duration in either state should be greater than
the duration between datasets.

14.0 Using the Signal Conditioner Calibration Functions

The AMTI signal conditioner arrives already calibrated at the factory. The signal conditioner

maintains its calibration tables within its permanent flash memory. The following table

describes the calibration information thus stored. For further information about these settings

refer to the user manual for the signal conditioner.

Table 3 – Signal Conditioner Calibration Parameter List

Item Description

Model Number The model number (name) of the signal conditioner

Serial Number The serial number of the signal conditioner

Firmware Version The firmware version of the signal conditioner

Calibration Date Date the signal conditioner was last calibrated

Gain Table A 24-element table containing the gain correction values

for the 4 possible gain settings for each of the 6 channels

Excitation Table An 18-element table containing the excitation correction values

for the 3 possible excitation settings for each of the 6 channels

USB Device SDK

Programmers Reference Page 28 of 136

DAC Gains Table A 6-element table containing the DAC gain corrections

for each of the 6 analog output channels

DAC Offsets Table A 6-element table containing the DAC zero offset corrections

for each of the 6 analog output channels

ADRef The nominal AD reference voltage

The List of Signal Conditioner Calibration Functions

The following functions are used to retrieve the calibration settings listed in the table above.

These settings were set at the factory after a detailed calibration of the signal conditioner.

fmGetAmplifierModelNumber

fmGetAmplifierSerialNumber

fmGetAmplifierFirmwareVersion

fmGetAmplifierDate

fmGetGainTable

fmGetExcitationTable

fmGetDACGainsTable

fmGetDACOffsetTable

fmGetADRef

15.0 Using the Platform Calibration Functions

The AMTI signal conditioner delivers fully processed data to the PC through the USB

connection. In order to do that, it must have the calibration tables for the attached platform

available to it. The signal conditioner has space allocated within its permanent flash memory

for storing calibration information about the attached platform. The table below describes all

of the platform calibration information the signal conditioner should maintain.

Newer AMTI platforms come with smart chips embedded in them which contain the platform

calibration information. If the attached platform is a smart platform, the signal conditioner will

read the smart chip and load the calibration settings from it. If the attached platform is not a

smart platform, the signal conditioner will use its locally saved settings.

USB Device SDK

Programmers Reference Page 29 of 136

Table 4 – The Platform Calibration Parameter List

Item Description

Platform Date Date the platform was last calibrated

Model Number The model number of the platform

Serial Number The serial number of the platform

Length The length of the platform in inches

Width The width of the platform in inches

X,Y,Z Offsets A 3-element table giving the spatial coordinates of the platform's

electrical center

X,Y,Z Extensions A 3-element table giving the extension values for each dimension of

the platform surface

Platform Capacity A 6-element table containing the platform capacity for each

of the 3 forces and 3 moments in English units

Bridge

Resistances

A 6-element table containing the strain gauge bridge resistance

for each platform channel in ohms (Ω)

Inverted

Sensitivity Matrix

A 36-element table containing the inverted sensitivity matrix

measured in English units (comes calibrated with the platform)

The List of Platform Calibration functions

The following functions are used to configure and retrieve the platform calibration settings.

fmSetPlatformDate

fmGetPlatformDate

fmSetPlatformModelNumber

fmGetPlatformModelNumber

fmSetPlatformSerialNumber

fmGetPlatformSerialNumber

USB Device SDK

Programmers Reference Page 30 of 136

fmSetPlatformLengthAndWidth

fmGetPlatformLengthAndWidth

fmSetPlatformXYZOffsets

fmGetPlatformXYZOffsets

fmSetPlatformXYZExtensions

fmGetPlatformXYZExtensions

fmSetPlatformCapacity

fmGetPlatformCapacity

fmSetPlatformBridgeResistance

fmGetPlatformBridgeResistance

fmSetInvertedSensitivityMatrix

fmGetInvertedSensitivityMatrix

16.0 Data Synchronization and the Signal Conditioners

The DLL handles all data synchronization between signal conditioners. When using a single USB

hub the is skew is approximately ± 1.5 microseconds between signal conditioners. If using

multiple hubs the skew is less than ± 125 microseconds between hubs.

17.0 AMTI Smart Platform and Signal Conditioner Communication

An AMTI smart platform contains all of its calibration information stored in a memory chip

within the platform. When a signal conditioner is turned on, it checks to determine if it is

connected to a smart platform. If it is so connected, it uploads the smart platform's calibration

information and uses it.

NOTE: If a platform is hot-swapped to a running signal conditioner, the signal conditioner must

be power-cycled to detect the smart platform. AMTI does not recommend hot swapping

equipment.

USB Device SDK

Programmers Reference Page 31 of 136

18.0 Troubleshooting Tips

Question: Why is the DLL is not delivering data after sending the start command?

Answer: The individual signal conditioners may be set for different acquisition rates, data types

and genlock states. This happens because some signal conditioners have been turned off for a

while or a new one is introduced. When first stating up, broadcast the desired acquisition rate,

genlock state and data types to prevent this.

If using genlock, remember that a nominal acquisition rate must be set at least as high as the

highest expected genlock pulse rate. If the rate is too low, it may cause stalling in the data flow.

Question: Why are data received from the DLL reaching a 'plateau value' and not showing

accurate data at the higher levels?

Answer: It is important to set the excitation voltages and gain factors to a range appropriate for

the expected data loads on each channel. Excessive signals to the signal conditioner will result

in the AD converters saturating at their peak value and not reflecting actual force data. The

excitations and gains can be set in the application using SDK functions (see Section 23), or can

be set in advance and saved by using the AMTI System Configuration program.

19.0 Function Definitions

The following Sections contain the definitions for each of the DLL functions. They are grouped
according to following categories:

DLL Initialization Functions
Data Collection Functions
Apply and Save Functions
Signal Conditioner Configuration Functions
Signal Conditioner Mechanical Limits Functions
Platform Ordering Functions
Signal Conditioner Calibration Functions
Platform Calibration Functions
Signal Conditioner Hardware Functions

USB Device SDK

Programmers Reference Page 32 of 136

20.0 DLL Initialization Function Definitions

fmDLLInit

Description

This function initializes the DLL for all activities, and must be called first in any application

program.

After calling fmDLLInit the program should either set a timer or sleep for 250 milliseconds,

followed by a call to fmDLLIsDeviceInitComplete to see if the DLL is loaded and the devices

ready. If fmDLLIsDeviceInitComplete returns 0 the initialization is not complete; reset the

timer or go back to sleep and try again later.

When fmDLLInit is called, the DLL conducts a search for connected signal conditioners. For any

connected signal conditioners it uploads the settings to the DLL for rapid access.

The DLL loads the last saved configuration file, AMTIUsbSetup.cfg, and compares the previous

configuration against the current setup to detect whether all the signal conditioners are

present. By calling fmDLLSetupCheck the application may determine whether the current setup

matches the configuration file or whether changes have been made.

The DLL always uses the platform data collection order from the configuration file. It will

maintain that dataset platform order even if some signal conditioners are not present.

Format

void fmDLLInit(void)

Related Functions

fmDLLIsDeviceInitComplete
fmDLLSetupCheck

USB Device SDK

Programmers Reference Page 33 of 136

fmDLLIsDeviceInitComplete

Description

This function works in conjunction with fmDLLInit. After fmDLLInit has been called, call

fmDLLIsDeviceInitComplete to see if the DLL has completed initialization. See fmDLLInit for

more information.

Format

int fmDLLIsDeviceInitComplete(void)

Returns

Initialization status:

Returns Description

0 Not completed initializing the DLL

1 The DLL is initialized, no signal conditioners are present

2 The DLL is initialized

Related Functions

fmDLLInit

USB Device SDK

Programmers Reference Page 34 of 136

fmDLLSetupCheck

Description

This function should be called after the DLL initialization has been completed and confirmed by
fmDLLIsDeviceInitComplete. The function fmDLLSetupCheck compares the last saved DLL
configuration file to the current DLL setup and notes any changes or discrepancies which may
need attending.

Format

int fmDLLSetupCheck(void)

Returns

DLL setup status value:

Value Description

0 No signal conditioners were found

1 The current setup is the same as the last saved configuration

211 The configuration file was not found

213 A configuration file was found but for the wrong version of the software

214 The configuration has changed: a different number of signal conditioners were
detected than the previously saved setup

215 The configuration has changed: the serial numbers of the signal conditioners don’t
match the previously saved setup

Related Functions

fmDLLInit

USB Device SDK

Programmers Reference Page 35 of 136

fmDLLSetUSBPacketSize

Description

Set the size of a packet being sent from the signal conditioner to the PC.

The current size of a packet is 512 bytes. Each packet has 16 datasets, with 8 elements in each

dataset. Each element is a 4-byte IEEE floating point value. The 8 elements consist of a dataset

counter, 6 data channels, and a trigger channel.

Note that this size value has no connection with the dataset type set in fmDLLSetDataFormat.

Format

void fmDLLSetUSBPacketSize(int size)

Arguments

Size in bytes of the packet. Currently this must always be set to 512.

USB Device SDK

Programmers Reference Page 36 of 136

fmDLLGetDeviceCount

Description

This function returns the current number of connected signal conditioners.

Format

int fmDLLGetDeviceCount(void)

Returns

Number of signal conditioners attached to the DLL:

Return Description

0 No signal conditioners found

> 0 Number of signal conditioners found

Related Functions

fmDLLSelectDeviceIndex

USB Device SDK

Programmers Reference Page 37 of 136

fmDLLSelectDeviceIndex

Description

Before communicating with a specific signal conditioner, the device must be selected first. The

fmDLLSelectDeviceIndex function selects a specific signal conditioner by its device index. Once

a signal conditioner has been selected it may be accessed through any of the fm prefix type

functions. The device indexes are ordered 0 to the number of signal conditioners minus one.

They are always ordered in the platform data collection order stored in the DLL configuration

file. Use fmDLLGetDeviceCount to know how many devices are connected.

To find out what signal conditioner is associated with a device index call

fmGetAmplifierSerialNumber.

The functions using the fmBroadcast or fmDLL prefix in their names do not require this

function as they are general functions not specific to any signal conditioner. The fmBroadcast

prefixed functions broadcast commands to all connected signal conditioners. The fmDLL

prefixed functions are commands which concern DLL settings and are not specific to signal

conditioners.

Format

void fmDLLSelectDeviceIndex(int index)

Arguments

The index of the signal conditioner to select for communication

Related Functions

fmDLLGetDeviceCount
fmDLLGetDeviceIndex

USB Device SDK

Programmers Reference Page 38 of 136

fmDLLGetDeviceIndex

Description

This function returns the device index of the currently selected signal conditioner. Use

fmDLLSelectDeviceIndex to select a signal conditioner as the currently selected device.

Format

int fmDLLGetDeviceIndex(void)

Returns

The device index of the signal conditioner currently selected for communication

Related Functions

fmDLLSelectDeviceIndex

USB Device SDK

Programmers Reference Page 39 of 136

fmDLLSaveConfiguration

Description

This function saves the current DLL settings to a configuration file stored in the AMTI

configuration directory. The configuration file is named AMTIUsbSetup.cfg.

The configuration file contains the following:

Global Settings Description , Range, or possible values

The configuration file version number 101 (current version)

The signal conditioner count 0-16 (range of possible values)

The acquisition rate 10-2000 (range of possible values)

The run mode 0-4 (range of possible values)

The genlock state 0-2 (range of possible values)

Signal Conditioner Settings Always saved in data collection order

Signal conditioner serial number

Signal conditioner model name

Platform serial number

Platform model name

Format

int fmDLLSaveConfiguration(void)

Returns

1 indicating a successful save operation, 0 if failed

Related Functions

fmDLLInit

USB Device SDK

Programmers Reference Page 40 of 136

fmDLLShutDown

Description

In order to shut down the DLL, fmDLLShutDown must be called. Calling this function

terminates all running threads and performs cleanup for the DLL. After calling this command

adequate time must be allotted for cleanup before closing the application. Although this time

increases per signal conditioner, 500 msec should be more than adequate in all cases.

If the DLL will be reinitialized to search for additional signal conditioners and not terminating

the application, just call fmDLLInit again. Do not call fmDLLShutDown.

Format

int fmDLLShutDown(void)

Returns

1 indicating success

Related Functions

fmDLLInit

USB Device SDK

Programmers Reference Page 41 of 136

21.0 Data Collection Function Definitions

fmBroadcastRunMode

Description

This function sets the type of data output by all attached signal conditioners. For digital USB

data the choices are English units, metric units, or bits. For analog data the choices are fully

conditioned and MSA 6 compatible.

For digital data, if the units are metric the forces are newtons and the moments are newton-

meters. If the units are English the forces are pounds and the moments are foot-pounds. If the

units are bits the full scale range is ±16384 bits for all channels.

In MSA 6 compatible analog output mode the signal conditioner performs as a traditional

analog amplifier with software selectable gains of 500, 1000, 2000, or 4000. Calibration

corrections are applied for channel excitations, channel gains, cable length and bridge

resistances.

In fully conditioned analog output mode calibration corrections are applied for excitations,

channel gains, cable length and bridge resistances, and a platform sensitivity matrix is used to

correct crosstalk. A user-supplied conversion factor is used to scale the analog outputs.

Format

void fmBroadcastRunMode(int mode)

Arguments

Data run mode to set:

Mode Digital Analog Volts

0 Metric MSA 6 Compatible

1 Metric Fully Conditioned

2 English MSA 6 Compatible

3 English Fully Conditioned

4 Bits MSA 6 Compatible

Related Functions

fmDLLGetRunMode
fmSetDACSensitivityTable

USB Device SDK

Programmers Reference Page 42 of 136

fmDLLGetRunMode

Description

This function returns the last data output mode received by the DLL. For digital USB data, the

choices are English units, metric units, or bits. For analog data the choices are MSA 6

compatible and fully conditioned.

For digital data, if the units are metric the forces are newtons and the moments are newton-

meters. If the units are English the forces are pounds and the moments are foot-pounds. If the

units are bits the full scale range is ±16384 bits

In MSA 6 compatible analog output mode the signal conditioner performs as a traditional

analog amplifier with software selectable gains of 500, 1000, 2000, or 4000. Calibration

corrections are applied for channel excitations, channel gains, cable length and bridge

resistances.

In fully conditioned analog output mode calibration corrections are applied for excitations,

channel gains, cable length and bridge resistances, and a platform sensitivity matrix is used to

correct crosstalk. A user supplied conversion factor is used to scale the analog outputs.

Format

int fmDLLGetRunMode(void)

Returns

Current DLL data run mode:

Mode Digital Analog Volts

0 Metric MSA 6 Compatible

1 Metric Fully Conditioned

2 English MSA 6 Compatible

3 English Fully Conditioned

4 Bits MSA 6 Compatible

Related Functions

fmBroadcastRunMode
fmGetRunMode

USB Device SDK

Programmers Reference Page 43 of 136

fmGetRunMode

Description

This function returns the run mode of the currently selected signal conditioner. For digital USB

data, the choices are English units, metric units, or bits. For analog data the choices are MSA 6

compatible and fully conditioned.

For digital data, if the units are metric the forces are newtons and the moments are newton-

meters. If the units are English the forces are pounds and the moments are foot-pounds. If the

units are bits the full scale range is ±16384 bits

In MSA 6 compatible analog output mode the signal conditioner performs as a traditional

analog amplifier with software selectable gains of 500, 1000, 2000, or 4000. Calibration

corrections are applied for channel excitations, channel gains, cable length and bridge

resistances.

In fully conditioned analog output mode calibration corrections are applied for excitations,

channel gains, cable length and bridge resistances, and a platform sensitivity matrix is used to

correct crosstalk. A user supplied conversion factor is used to scale the analog outputs.

Format

int fmGetRunMode(void)

Returns

Data run mode for the currently selected signal conditioner:

Mode Digital Analog Volts

0 Metric MSA 6 Compatible

1 Metric Fully Conditioned

2 English MSA 6 Compatible

3 English Fully Conditioned

4 Bits MSA 6 Compatible

Related Functions

fmBroadcastRunMode
fmDLLGetRunMode

USB Device SDK

Programmers Reference Page 44 of 136

fmBroadcastGenlock

Description

This function sets the genlock mode for all attached signal conditioners.

In genlock mode, the signal conditioner collects a dataset only on the rising or falling edge of an

electrical signal input into the genlock port of the signal conditioner. For more information refer

to the section Using the Genlock Signal (section 12), and the signal conditioner user manual.

The function fmBroadcastStart must still be called to start data collection.

Format

void fmBroadcastGenlock (int mode)

Arguments

Genlock mode to set:

Mode Description

0 Genlock off

1 Collect datasets on rising edge

2 Collect datasets on falling edge

Related Functions

fmDLLGetGenlock

USB Device SDK

Programmers Reference Page 45 of 136

fmDLLGetGenlock

Description

This function returns the last genlock configuration setting received by the DLL.

In genlock mode, the signal conditioner collects a dataset only on the rising or falling edge of an

electrical signal input into the genlock port of the signal conditioner. For more information,

refer to the section Using the Genlock Feature (section 12), and the signal conditioner user

manual.

Format

int fmDLLGetGenlock(void)

Returns

Current DLL genlock mode:

Mode Description

0 Genlock mode is off

1 Collect datasets on rising edge

2 Collect datasets on falling edge

Related Functions

fmBroadcastGenlock

USB Device SDK

Programmers Reference Page 46 of 136

fmBroadcastAcquisitionRate

Description

This function sets the acquisition rate, in datasets per second, for all connected signal

conditioners.

Note that various models of AMTI signal conditioners support different acquisition rates; check

the documentation for the particular devices being used to make sure a specific rate is

supported. The table below represents the rates supported by the Gen5 signal conditioner.

If a signal conditioner is running in genlock mode, the actual data rate will be determined by

the genlock pulse rate. However, the DLL requires that the nominal acquisition rate be set to a

value at least as high as the highest rate to be received on the genlock port.

Format

void fmBroadcastAcquisitionRate(int rate)

Arguments

Acquisition rate, in datasets per second (Hz)

The following acquisition rates are permissible. If the acquisition rate is not recognized it will

default to 500.

Acquisition Rates

2000 1800 1500 1200 1000 900 800 600 500 450

400 360 300 250 240 225 200 180 150 125

120 100 90 80 75 60 50 45 40 30

25 20 15 10

Related Functions

fmDLLGetAcquisitionRate
fmGetAcquisitionRate

USB Device SDK

Programmers Reference Page 47 of 136

fmDLLGetAcquisitionRate

Description

This function returns the last acquisition rate setting received by the DLL.

The acquisition rate is in datasets per second (Hz).

Format

int fmDLLGetAcquisitionRate(void)

Returns
Current DLL acquisition rate:

Acquisition Rates

2000 1800 1500 1200 1000 900 800 600 500 450

400 360 300 250 240 225 200 180 150 125

120 100 90 80 75 60 50 45 40 30

25 20 15 10

Related Functions

fmBroadcastAcquisitionRate
fmGetAcquisitionRate

USB Device SDK

Programmers Reference Page 48 of 136

fmGetAcquisitionRate

Description

This function returns the acquisition rate of the currently selected signal conditioner, in
datasets per second (Hz).

Format

int fmGetAcquisitionRate(void)

Returns

Acquisition rate of the currently selected signal conditioner:

Acquisition Rates

2000 1800 1500 1200 1000 900 800 600 500 450

400 360 300 250 240 225 200 180 150 125

120 100 90 80 75 60 50 45 40 30

25 20 15 10

Related Functions

fmBroadcastAcquisitionRate
fmDLLGetAcquisitionRate

USB Device SDK

Programmers Reference Page 49 of 136

fmBroadcastStart

Description

Call this function to start data acquisition from all connected signal conditioners.

Any other SDK function called after fmBroadcastStart (except for fmBroadcastZero) will

automatically stop acquisition. This is to preserve signal conditioner synchronization. The

formal stop acquisition function is fmBroadcastStop.

Note that when genlock mode is active, data will not be sent from a signal conditioner to the

SDK until the genlock pulses start to arrive at the signal conditioner's genlock port.

This function does not affect the analog outputs of a signal conditioner, as they are always

active.

Format

void fmBroadcastStart(void)

Related Functions

fmBroadcastStop

USB Device SDK

Programmers Reference Page 50 of 136

fmBroadcastStop

Description

Call this function to stop data acquisition from all connected signal conditioners.

This function does not affect analog outputs, as they are always active.

Format

void fmBroadcastStop(void)

Related Functions

fmBroadcastStart

USB Device SDK

Programmers Reference Page 51 of 136

fmBroadcastZero

Description

This function tells all connected signal conditioners to zero their platforms. This function may

be called before or after the data collection start command. Data collected while the zero

process is taking place will consist of all zeros. If this function is called after the start command

it will not cause data collection to stop unlike most other DLL functions.

Format

void fmBroadcastZero(void)

Related Functions

fmBroadcastStart
fmBroadcastStop

USB Device SDK

Programmers Reference Page 52 of 136

fmDLLPostDataReadyMessages

Description

This function enables or disables the sending of asynchronous messages indicating the
availability of new data in the SDK.

There are three ways to receive data: by polling on a periodic basis, or by receiving data-ready
messages at either the main application window or in a user thread each time a data buffer is
ready. To enable the sending of data-ready messages to a window or user thread, the
fmDLLPostDataReadyMessages function must be called with a 1 parameter. If polling is used,
call fmDLLPostDataReadyMessages with a 0 parameter.

If messages are to be used, either the fmDLLPostUserThreadMessages or
fmDLLPostWindowMessages function must be called to identify the recipient of the data-ready
message. Messages cannot be posted to both the main application window and user threads at
the same time.

Format

void fmDLLPostDataReadyMessages(int mode)

Arguments

Data ready message mode:

Mode Description

0 Do not post data ready messages

1 Post data ready messages

Related Functions

fmDLLPostUserThreadMessages
fmDLLPostWindowMessages

USB Device SDK

Programmers Reference Page 53 of 136

fmDLLPostWindowMessages

Description

This function enables the posting of messages to an application window each time data is ready
in the SDK. The function fmDLLPostWindowMessages passes the window's handle to the DLL.
To enable messaging from the SDK, the function fmDLLPostDataReadyMessages must first be
called with a non-zero value.

When using the Microsoft Foundation Classes, the GetSafeHwnd function will return a handle
to the window.

The window message identifier sent by the SDK will always be WM_USER + 108 .

Format

void fmDLLPostWindowMessages(HWND handle)

Arguments

A handle to the window which will receive the data-ready messages

Related Functions

fmDLLPostDataReadyMessages
fmDLLPostUserThreadMessages

USB Device SDK

Programmers Reference Page 54 of 136

fmDLLPostUserThreadMessages

Description

This function enables the posting of messages to a user thread each time data is ready in the
SDK. The function fmDLLPostUserThreadMessages passes the thread ID to the DLL. To enable
messaging from the SDK, the function fmDLLPostDataReadyMessages must first be called with
a non-zero value.

The thread message identifier sent by the SDK will always be WM_USER + 109 .

Format

void fmDLLPostUserThreadMessages(unsigned int threadID)

Arguments

ID of the thread to receive the messages (a CWinThread)

(Note: refer to m_nThreadID, a member of the CWinThread class)

Related Functions

fmDLLPostDataReadyMessages
fmDLLPostUserThreadMessages

USB Device SDK

Programmers Reference Page 55 of 136

fmDLLSetDataFormat

Description

There are two data formats. The user can receive each dataset in eight element or six element

format. A six element dataset will consist solely of the force and moment channels. An 8

element dataset will have two additional channels, a dataset counter and a trigger state.

The dataset counter records the number of datasets after the start command was received. The

dataset counter rolls over at 16,777,215 (224 – 1). The trigger state will be either 0 or 1

depending on the electrical state of the trigger port on the signal conditioner.

Eight Element format

Channel 0 1 2 3 4 5 6 7

Element Counter Fx Fy Fz Mx My Mz Trigger

Six Element Format

Channel 0 1 2 3 4 5

Element Fx Fy Fz Mx My Mz

Format

void fmDLLSetDataFormat(int DataFormat)

Arguments

Packet data format:

Value Description

0 Six channel format

1 Eight channel format

Related Functions

fmDLLTransferFloatData
fmDLLGetTheFloatDataLBVStyle

USB Device SDK

Programmers Reference Page 56 of 136

fmDLLTransferFloatData

Description

This function is used to transfer incoming data from the SDK to an application. If the

development environment is Visual C++ or a similar C language this is the recommended data

collection function. Development in Labview or Matlab may require the use of the

fmDLLGetTheFloatDataLBVStyle function.

If data is available the referenced argument will return pointing to a full data buffer. The

function does not return partial data buffers. Note: the buffers are allocated within the SDK

and should not be allocated or deallocated at the application level.

The data buffer consists of 16 datasets from each connected signal conditioner. For one signal

conditioner the data buffer consists of 16 datasets; for two signal conditioners there are data

buffer consist of 16 datasets from signal conditioner one, 16 datasets from signal conditioner

two, and so on. The datasets from multiple signal conditioners are interlaced, that is to say, the

first dataset from each signal conditioner is found in sequence, followed by the second dataset

from each signal conditioner, and so on.

A single dataset will consist of either 6 or 8 elements of data depending on the selected data

format. Each data element is of the type float. The data format is set by calling

fmDLLSetDataFormat. A six element dataset will consist solely of the force and moment

channels. An 8 element dataset will have two additional channels, a dataset counter and a

trigger state. The dataset counter records the number of dataset after the start command was

received. The trigger state will be either 0 or 1 depending on the electrical state of the trigger

port on the signal conditioner.

Dataset Format

Channel index 0 1 2 3 4 5 6 7

6 element Fx Fy Fz Mx My Mz

8 element Data counter Fx Fy Fz Mx My Mz Trigger state

The order of the datasets in the data buffer must be considered. If a data buffer contains data

from three signal conditioners the first dataset in the data buffer would be from the first signal

conditioner, the second dataset from the second signal conditioner, and so on.

USB Device SDK

Programmers Reference Page 57 of 136

The size of the data buffer in floating point values is as follows:

DBS = the data buffer size
NCD = the number of channels per dataset
NOSC = the number of signal conditioners
16 = the number datasets from each signal conditioner in every packet

DBS = NCD * NOSC * 16

Format

int fmDLLTransferFloatData(float *&ptr)

Arguments

The function requires a reference to a pointer to floating point data. If data is available the

pointer will return pointing to a full data buffer of type float. If no data is available the pointer

will be unchanged.

Returns

The number of data sets available. Note that only one buffer will actually be accessible at the

pointer, however, so fmDLLTransferFloatData should be called repeatedly until it returns a

zero, indicating no more data are available.

Returns Description

0 No new data available

> 0 Data returned at ptr

Related Functions

fmDLLGetDeviceCount
fmDLLSetDataFormat
fmDLLGetTheFloatDataLBVStyle

USB Device SDK

Programmers Reference Page 58 of 136

fmDLLGetTheFloatDataLBVStyle

Description

This function is used to transfer incoming data from the SDK to an application. This is the

recommended data collection function for development using Labview or Matlab. For

development using Visual C++ or some other C language the fmDLLTransferFloatData function

should be used.

The difference between the two data transfer functions is that fmDLLGetTheFloatDataLBVStyle

passes in an array to be filled by the SDK, while fmDLLTransferFloatData function simply

returns a pointer to an array of floating point values allocated by the SDK.

If data are available the data argument will return with a full data buffer. The function does not

return partial data buffers.

The data buffer consists of 16 datasets from each connected signal conditioner. For one signal

conditioner the data buffer consists of 16 datasets, For two signal conditioners are data buffer

consist of 16 datasets from signal conditioner one, and 16 datasets from signal conditioner two

etc.

A single dataset will consist of either 6 or 8 elements of data depending on the selected data

format. Each data element is of the type float. The data format is set by calling

fmDLLSetDataFormat. A six element dataset will consist solely of the force and moment

channels. An 8 element dataset will have two additional channels, a dataset counter and a

trigger state. The dataset counter records the number of dataset after the start command was

received. The trigger state will be either 0 or 1 depending on the input state of the trigger port

on the signal conditioner.

Dataset Format

Channel index 0 1 2 3 4 5 6 7

6 element Fx Fy Fz Mx My Mz

8 element Data counter Fx Fy Fz Mx My Mz Trigger state

The order of the datasets in the data buffer must be considered. If a data buffer contains data

from three signal conditioners the first dataset in the data buffer would be from conditioner

one, the second dataset from conditioner two etc.

USB Device SDK

Programmers Reference Page 59 of 136

The size of the data buffer in floating point values is as follows:

DBS = the data buffer size
NCD = the number of channels per dataset
NOSC = the number of signal conditioners
16 = the number datasets from each signal conditioner in every packet

DBS = NCD * NOSC * 16

Format

int fmDLLGetTheFloatDataLBVStyle(float *dptr, int size)

Arguments

A pointer to an array of type float which will be filled with data, and a size. The array size should

be calculated according to the formula above.

If data is available the array will returned filled. If no data is available the array will return

unchanged.

Returns

The number of data sets available. Note that only one buffer will actually be copied into the

array, however, so fmDLLGetTheFloatDataLBVStyle should be called repeatedly until it returns

a zero, indicating no more data is available.

Returns Description

0 No new data available

> 0 Data returned in the array

Related Functions

fmDLLGetDeviceCount
fmDLLSetDataFormat
fmDLLTransferFloatData

USB Device SDK

Programmers Reference Page 60 of 136

22.0 Apply and Save Function Definitions

fmBroadcastResetSoftware

Description

This function resets the software state of all connected signal conditioners.

When new signal conditioner settings are downloaded, the changes are not implemented until

this function is called. First make all the configuration changes (excitations, gains, acquisition

rate, etc.), then call this function for the changes to be applied. After this function is called do

not follow it directly with another function call as the signal conditioner will go into an

indeterminate state while resetting; pause for at least 250 milliseconds.

This function does not save the changes to flash memory. Power cycling the signal conditioner

will reset the last saved settings. Use fmBroadcastSave to store changes permanently.

Note: the function fmBroadcastAcquisitionRate does not need an fmResetsoftware function

call to be applied. It is applied on the next fmBroadcastStart command.

Format

void fmBroadcastResetSoftware(void)

Related Functions

fmResetSoftware
fmBroadcastSave
fmSave

USB Device SDK

Programmers Reference Page 61 of 136

fmResetSoftware

Description

This function resets the software state of the currently selected signal conditioner

When new signal conditioner settings are downloaded, the changes are not implemented until

this function is called. First make all the configuration changes (excitations, gains, acquisition

rate, etc.), then call this function for the changes to be applied. After this function is called do

not follow it directly with another function call as the signal conditioner will go into an

indeterminate state while resetting; pause for at least 250 milliseconds.

This function does not save the changes to flash memory. Power cycling the signal conditioner

will reset the last saved settings. Use fmSave to store changes permanently.

Note: the function fmBroadcastAcquisitionRate does not need an fmResetsoftware function

call to be applied. It is applied on the next fmBroadcastStart command.

Format

void fmResetSoftware(void)

Related Functions

fmBroadcastResetSoftware
fmBroadcastSave
fmSave

USB Device SDK

Programmers Reference Page 62 of 136

fmBroadcastSave

Description

This function saves the current signal conditioner software settings to non-volatile memory for

all attached signal conditioners. The saved settings are restored whenever the signal

conditioner is powered on.

It takes a fair amount of time to write to flash. Do not send any signal conditioner commands

for at least 250 milliseconds after calling this function as the signal conditioner is busy. The

flash chip in the signal conditioner is rated for 20000 to 50000 writes, to it is best to make all

necessary configuration changes and then save.

Format

void fmBroadcastSave(void)

Related Functions

fmBroadcastResetSoftware
fmResetSoftware
fmSave

USB Device SDK

Programmers Reference Page 63 of 136

fmSave

Description

This function saves the current signal conditioner software settings to non-volatile memory for

the currently selected signal conditioner. The saved settings are restored whenever the signal

conditioner is powered on.

It takes a fair amount of time to write to flash. Do not send any signal conditioner commands

for at least 250 milliseconds after calling this function as the signal conditioner is busy. The

flash chip in the signal conditioner is rated for 20000 to 50000 writes, to it is best to make all

necessary configuration changes and then save.

Format

void fmSave(void)

Related Functions

fmBroadcastSave
fmBroadcastResetSoftware

USB Device SDK

Programmers Reference Page 64 of 136

fmApplyLimited

Description

This function saves the current hardware zero settings to the signal conditioner flash memory.

When the signal conditioner is powered on these zero settings will automatically be loaded.

Format

void fmApplyLimited(void)

Related Functions

fmBroadcastSave
fmBroadcastResetSoftware

USB Device SDK

Programmers Reference Page 65 of 136

23.0 Signal Conditioner Configuration Function Definitions

fmSetCurrentGains

Description

This function sets the nominal gain levels for each force and moment channel on the currently

selected signal conditioner.

The function requires a 6-element array of type long integer. The values for each element are

shown in the table below:

Gain Setting Corresponding Gain

0 500

1 1000

2 2000

3 4000

Note that the gain settings will not take effect until a call to the fmResetsoftware or

fmBroadcastResetsoftware function is made.

Format

void fmSetCurrentGains(long *gains)

Arguments

A pointer to a 6-element array containing gain settings for each channel

Related Functions

fmGetCurrentGains

USB Device SDK

Programmers Reference Page 66 of 136

fmGetCurrentGains

Description

This function returns the nominal gain levels for each force and moment channel on the

currently selected signal conditioner.

The function requires a 6-element array of type long integer. The values for each element are

shown in the table below:

Gain Setting Corresponding Gain

0 500

1 1000

2 2000

3 4000

Format

void fmGetCurrentGains(long *gains)

Arguments

A pointer to a 6-element array to receive gain settings for each channel

Related Functions

fmSetCurrentGains

USB Device SDK

Programmers Reference Page 67 of 136

fmSetCurrentExcitations

Description

This function sets the nominal excitation voltage levels for each force and moment channel on

the currently selected signal conditioner.

The function requires a 6-element array of type long integer. The values for each element are

shown in the table below:

Excitation Setting Corresponding Excitation

0 2.5 volts

1 5.0 volts

2 10.0 volts

Note that the excitation settings will not take effect until a call to the fmResetsoftware or

fmBroadcastResetsoftware function is made.

Format

void fmSetCurrentExcitations(long *excitations)

Arguments

A pointer to a 6-element array containing excitation settings for each channel

Related Functions

fmGetCurrentExcitations

USB Device SDK

Programmers Reference Page 68 of 136

fmGetCurrentExcitations

Description

This function returns the nominal excitation voltage levels for each force and moment channel

on the currently selected signal conditioner.

The function requires a 6-element array of type long integer. The values for each element are

shown in the table below:

Excitation Setting Corresponding Excitation

0 2.5 volts

1 5.0 volts

2 10.0 volts

Format

void fmGetCurrentExcitations(long *excitations)

Arguments

A pointer to a 6-element array to receive excitation settings for each channel

Related Functions

fmSetCurrentExcitation

USB Device SDK

Programmers Reference Page 69 of 136

fmSetChannelOffsetsTable

Description

This function sets the channel offset parameters for each force and moment channel on the

currently selected signal conditioner.

The channel offset parameter allows the user to offset the mechanical range of the signal

conditioner to better adapt to the test being conducted. The channel offsets table is a 6

element array of type float. The value for each channel must lie between -0.99 and 0.99.

Zero is the default value.

For example, consider a test that involves jumping on a platform. The expected physical range

of channel Fz platform loading may be between -25 and 1500 newtons. Traditionally the

electrical range of the signal conditioner would need to be -2000 to +2000 newtons in order to

encompass the physical load range. However a better signal conditioner resolution could be

accomplished by doubling the gain and offsetting the load range from -250 to 1750 newtons.

The channel offset table allows the user to set a zero offset. The tables below illustrates the

effects of three different zero offset settings for a single channel on a signal conditioner with an

electrical range configured for ±1000 newtons. The first table is referring to the digital outputs

and the second table is referring to the analog outputs.

Digital Output in newtons

channel offset 0 0.75 -0.75

maximum electrical range 1000 250 1750

zero load output 0 0 0

minimum electrical range -1000 -1750 -250

Analog Output in Volts

channel offset 0 0.75 -0.75

maximum output range 5.0 5.0 5.0

zero load output 0.0 3.75 -3.75

minimum output range -5.0 -5.0 -5.0

USB Device SDK

Programmers Reference Page 70 of 136

The fmSetChannelOffsetsTable function downloads the channel offsets table to the currently
selected signal conditioner. The array should be loaded in channel order as follows:

 Channel Offset Table

Channel Fx Fy Fz Mx My Mz

Index 0 1 2 3 4 5

Range Nominal Values

(-0.99 to 0.99) 0.0 0.0 0.0 0.0 0.0 0.0

Note that the channel offset settings will not take effect until a call to the fmResetsoftware or

fmBroadcastResetsoftware function is made.

Format

void fmSetChannelOffsetsTable(float *offsets)

Arguments

A pointer to a 6-element float array containing offsets for each channel

Related Functions

fmGetChannelOffsetsTable
fmUpdateMechanicalMaxAndMin
fmGetMechanicalMaxAndMin

USB Device SDK

Programmers Reference Page 71 of 136

fmGetChannelOffsetsTable

Description

This function returns the channel offset for each force and moment channel on the currently
selected signal conditioner. Channel offset values should all lie between -0.99 and +0.99. The
offset table returned is as follows:

 Channel Offset Table

Channel Fx Fy Fz Mx My Mz

Index 0 1 2 3 4 5

Range Nominal Values

(-0.99 to 0.99) 0.0 0.0 0.0 0.0 0.0 0.0

Format

void fmGetChannelOffsetsTable(float *offsets)

Arguments

A pointer to a 6-element array to receive offsets for each channel

Related Functions

fmSetChannelOffsetsTable

USB Device SDK

Programmers Reference Page 72 of 136

fmSetCablelength

Description

This function sets the cable length factor for the currently selected signal conditioner. The

value is defined in feet (1 foot = 30.5 cm), and should correspond to the length of the cable

connecting the signal conditioner to its associated force platform or load cell.

The strength of the electrical signal will drop in proportion to the cable length. By setting the

cable length the signal conditioner can apply a correction factor and produce more accurate

force and moment values.

Note that the cable length setting will not take effect until a call to the fmResetsoftware or

fmBroadcastResetsoftware function is made.

Format

void fmSetCableLength(float length)

Arguments

The cable length in feet between the platform and the signal conditioner

Related Functions

fmGetCableLength

USB Device SDK

Programmers Reference Page 73 of 136

fmGetCableLength

Description

This function returns the cable length factor for the currently selected signal conditioner. The

value is defined in feet (1 foot = 30.5 cm), and should correspond to the length of the cable

connecting the signal conditioner to its associated force platform or load cell.

The strength of the electrical signal will drop in proportion to the cable length. By setting the

cable length the signal conditioner can apply a correction factor and produce more accurate

force and moment values.

Format

float fmGetCableLength(void)

Return

The cable length in feet between the platform and the signal conditioner

Related Functions

fmSetCableLength

USB Device SDK

Programmers Reference Page 74 of 136

fmSetMatrixMode

Description

This function sets the matrix mode for the currently selected signal conditioner.

The inverted sensitivity matrix is a 36-element array of type float; it is used to eliminate

crosstalk. It consists of calibration coefficients which convert microvolts to engineering units.

Occasionally the user may only want to use the main diagonal terms as opposed to the full

calibration matrix. See the function description for fmSetInvertedSensitivityMatrix for a full

description of the inverted sensitivity matrix.

Note that the matrix mode setting will not take effect until a call to the fmResetsoftware or

fmBroadcastResetsoftware function is made.

Format

void fmSetMatrixMode(long mode)

Arguments

A mode value representing the matrix mode:

Mode Description

1 Use full matrix

0 Use main diagonal terms only

Related Functions

fmGetMatrixMode
fmSetInvertedSensitivityMatrix
fmGetInvertedSensitivityMatrix

USB Device SDK

Programmers Reference Page 75 of 136

fmGetMatrixMode

Description

This function returns the matrix mode for the currently selected signal conditioner.

The inverted sensitivity matrix is a 36-element array of type float; it is used to eliminate

crosstalk. It consists of calibration coefficients which convert microvolts to engineering units.

Occasionally the user may only want to use the main diagonal terms as opposed to the full

calibration matrix. See the function description for fmSetInvertedSensitivityMatrix for a full

description of the inverted sensitivity matrix.

Format

long fmGetMatrixMode(void)

Returns

A mode value representing the matrix mode:

Mode Description

1 Use full matrix

0 Use main diagonal terms only

Related Functions

fmSetMatrixMode
fmSetInvertedSensitivityMatrix
fmGetInvertedSensitivityMatrix

USB Device SDK

Programmers Reference Page 76 of 136

fmSetPlatformRotation

Description

This function sets the platform rotation factor for the currently selected signal conditioner.

The rotation factor allows the signal conditioner to perform a rotational transformation on the

data. Sometimes a platform must be rotated from its original orientation to get the cable

connectors out of the way. This function allows the user to change the platform orientation

while maintaining the X, Y axis orientation. The rotation must be entered in degrees (0 to 360).

The default setting is zero.

The transformation does not apply to all run modes:

Output modes Transformation applied

Digital English Yes

 Metric Yes

 Bits No

Analog Fully Conditioned Yes

 MSA 6 Compatible No

Note that the platform rotation setting will not take effect until a call to the fmResetsoftware

or fmBroadcastResetsoftware function is made.

Format

void fmSetPlatformRotation(float rotation)

Arguments

A rotation value in degrees, from 0 to 360

 Related Functions

fmGetPlatformRotation

USB Device SDK

Programmers Reference Page 77 of 136

fmGetPlatformRotation

Description

This function returns the platform rotation factor for the currently selected signal conditioner.

The rotation will be from 0 to 360 degrees. The default rotation is zero.

Format

float fmGetPlatformRotation(void)

Returns

A rotation value in degrees, from 0 to 360

Related Functions

fmSetPlatformRotation

USB Device SDK

Programmers Reference Page 78 of 136

24.0 Signal Conditioner Mechanical Limits Function Definitions

fmUpdateMechanicalMaxAndMin

Description

This function uploads the last calculated mechanical range of the signal conditioner under its

current configuration to the DLL. The mechanical range is recalculated every time the signal

conditioner is reset. The functions fmBroadcastResetSoftware and fmResetSoftware reset the

signal conditioner.

NOTE: This function is uploads the currently configured mechanical limits of the signal

conditioner, not that of the attached platform.

Format

void fmUpdateMechanicalMaxAndMin(void)

Related Functions

fmGetMechanicalMaxAndMin

USB Device SDK

Programmers Reference Page 79 of 136

fmGetMechanicalMaxAndMin

Description

This function retrieves the mechanical maximum and minimum for each channel under the

current signal conditioner configuration. The mechanical max and min table is a 12 element

array of type float. The array will be loaded in row, column order, the first row being

mechanical maximums and the second row being mechanical minimums. The values will be in

either English or metric units depending on the current run mode selection.

The function fmUpdateMechanicalMaxAndMin must be called prior to calling this function

unless no parameters have been modified after initializing the DLL. The program should wait a

short period before calling fmGetMechanicalMaxAndMin to give the signal conditioner time to

calculate and upload the values. If the upload is not complete, this function will return a zero

indicating that the data are not correct.

NOTE: This function retrieves the currently configured mechanical limits of the signal

conditioner, not that of the attached platform.

Format

int fmGetMechanicalMaxAndMin(float *data)

Parameter

A pointer to a 12-element array to contain the mechanical maximum and minimum data

Return

The status of the upload process

Return Description

0 The DLL is currently uploading the mechanical range data after a call to
fmUpdateMechanicalMaxAndMin - wait and try again

1 The array contains the last updated mechanical range data

Related Functions

fmUpdateMechanicalMaxAndMin
fmDLLGetRunMode

USB Device SDK

Programmers Reference Page 80 of 136

fmUpdateAnalogMaxAndMin

Description

This function uploads the last calculated analog output range of the signal conditioner under its

current configuration to the DLL. The mechanical range is recalculated every time the signal

conditioner is reset. The functions fmBroadcastResetSoftware and fmResetSoftware reset the

signal conditioner. Upon DLL initialization fmUpdateAnalogMaxAndMin is automatically

called.

The maximum output is calculated by dividing the channel DAC sensitivity value by 5.0. The

minimum output is calculated by dividing the channel DAC sensitivity by -5.0. The DAC

sensitivity values are always in millivolts per pound for forces and millivolts per inch-pound for

moments.

If the analog output range is greater than the configured signal conditioner mechanical range,

the analog output range will be constrained by the mechanical range.

This function is for informational purposes only.

NOTE: When the analog outputs are set to MSA 6 compatible mode this function is

indeterminate. The analog output range is then nominally the same as the electrical range.

Format

void fmUpdateAnalogMaxAndMin(void)

Related Functions

fmGetAnalogMaxAndMin
fmUpdateMechanicalMaxAndMin
fmGetMechanicalMaxAndMin

USB Device SDK

Programmers Reference Page 81 of 136

fmGetAnalogMaxAndMin

Description

This function retrieves the analog output range of the signal conditioner from the DLL. The

analog output maximum and minimum table is a 12 element array of type float. The first 6

elements are the analog maximums; the last 6 elements are the analog minimums. The values

will be in either English or metric units depending on the current run mode selection.

The function fmUpdateAnalogMaxAndMin must be called prior to fmGetAnalogMaxAndMin

unless the DAC Sensitivities have not been modified after initializing the DLL.

NOTE: When the analog outputs are set to MSA 6 compatible mode this function is

indeterminate. The analog output range is then nominally the same as the electrical range.

Format

int fmGetAnalogMaxAndMin(float *data)

Parameter

A pointer to a 12-element array to contain the analog output maximum and minimum data

Returns

The status of the upload process

Return Description

0 The DLL is currently uploading the analog range data after a call to
fmUpdateAnalogMaxAndMin - wait and try again

1 The array contains the last updated analog output range data

Related Functions

fmUpdateAnalogMaxAndMin
fmDLLGetRunMode
fmSetDACSensitivityTable

USB Device SDK

Programmers Reference Page 82 of 136

25.0 Platform Ordering Function Definitions

fmDLLSetPlatformOrder

Description

This function sets a new platform data collection order based on the current ordering. The

platform order is important in analyzing output data in order to match up digital data with

physical positions of the platforms when more than one are used.

To use this function, the current order of the platforms and the identity of the platforms and/or

their associated signal conditioners must be known. To determine the order of the platforms

do the following. First call fmDLLGetDeviceCount to get the number of signal conditioners.

Then create a loop to cycle through the signal conditioners. Use the functions

fmDLLSelectDeviceIndex and fmGetAmplifierSerialNumber to get the serial number of each

signal conditioner. Once the serial number for each device index is known, simply map the new

desired device index order into an array of integers and pass a pointer to the array into the

fmDLLSetPlatformOrder function.

Format

void fmDLLSetPlatformOrder(int *indexarray)

 Arguments

An array of platform indices referring to the current platform ordering. The array must be of

size at least equal to the current number of attached signal conditioners. Each element of the

array contains a current signal conditioner device index, and after fmDLLSetPlatformOrder is

called the index of each array element will become the new device index.

Related Functions

fmDLLGetPlatformOrder

USB Device SDK

Programmers Reference Page 83 of 136

fmBroadcastPlatformOrderingThreshold

Description

This function sets the threshold for Fz data to be used for automated ordering of platforms (see

Section 11 for details).

When auto-ordering is used the DLL is set to detect when each platform is stepped on. The

order in which the platforms are stepped on determines the platform order in the collected

data. The platform threshold value is a value which is crossed when a user steps on the

platform. Be sure it is not set so low as to be triggered by vibration or noise.

The threshold value is defined in bits. The full scale range of the signal conditioner in bits is

±16384, though a useful threshold would nearly always be a positive value, since zero indicates

an unloaded state and Fz increases in the positive direction as force is applied to the top of the

platform.

Format

void fmBroadcastPlatformOrderingThreshold(float value)

Arguments

Threshold value in bits

Related Functions

fmDLLStartPlatformOrdering
fmDLLCancelPlatformOrdering

USB Device SDK

Programmers Reference Page 84 of 136

fmDLLStartPlatformOrdering

Description

This function initiates the automated platform ordering procedure (see Section 11 for details).

When fmDLLStartPlatformOrdering is called the DLL continuously polls all platforms to detect if

the Fz force threshold (as set in fmBroadcastPlatformOrderingThreshold) is crossed. The

order in which each platform's threshold is crossed determines the data collection order.

Once all platforms have been detected the new platform order is set.

Format

void fmDLLStartPlatformOrdering(void)

Related Functions

fmBroadcastPlatformOrderingThreshold
fmDLLIsPlatformOrderingComplete
fmDLLCancelPlatformOrdering

USB Device SDK

Programmers Reference Page 85 of 136

fmDLLIsPlatformOrderingComplete

Description

This function is called to ascertain that the automated platform ordering procedure is complete

(see Section 11 for details).

After fmDLLStartPlatformOrdering is called it is expected that the interactive user will apply

force to the platforms in the desired order. The data will be read by the DLL to establish the

platform order. When the last attached signal conditioner has indicated an ordering force, the

ordering is complete and fmDLLIsPlatformOrderingComplete will return 1. This routine may be

called in a periodic loop to indicate that the process is finished.

Format

int fmDLLIsPlatformOrderingComplete(void)

Returns

Auto-ordering procedure status:

Status Description

0 Platform Ordering is not complete

1 Platform Ordering is complete

Related Functions

fmBroadcastPlatformOrderingThreshold
fmDLLStartPlatformOrdering
fmDLLCancelPlatformOrdering

USB Device SDK

Programmers Reference Page 86 of 136

fmDLLCancelPlatformOrdering

Description

This function is called to cancel the automated platform ordering process before it has

completed, presumably if the user has determined that something is incorrect (a bad threshold

value, for example). If the process is not cancelled, the DLL will continue to monitor all

platform channels to watch for Fz data, and normal force measurement will be impossible.

Format

void fmDLLCancelPlatformOrdering(void)

Related Function

fmBroadcastPlatformOrderingThreshold
fmDLLStartPlatformOrdering
fmDLLIsPlatformOrderingComplete

USB Device SDK

Programmers Reference Page 87 of 136

26.0 Signal Conditioner Calibration Function Definitions

fmGetProductType

Description

This function returns a model type value specific to the currently selected signal conditioner.

The model type allows application code to check attached signal conditioners for possible

special handling due to variations in product capabilities. Current product types supported are:

 100 - Gen 5 signal conditioner

 300 - Optima signal conditioner

 400 - Hall-effect integrated Optima platform (Accusway/Accugait)

For the specific characteristics of the various products, please refer to the particular manuals

for those products.

Format

long fmGetProductType(void)

Returns

A type value specific to the signal conditioner product line

Related Functions

fmGetAmplifierModelNumber

fmGetAmplifierSerialNumber

USB Device SDK

Programmers Reference Page 88 of 136

fmGetAmplifierModelNumber

Description

This function returns the model number (really a name) of the currently selected signal

conditioner. The model name reflects the general class of the signal conditioner.

The model name may contain up to 16 characters, so the array specified in the parameter

should be of at least that length.

Format

void fmGetAmplifierModelNumber(char *buf)

Arguments

A pointer to a character array to hold the model number (minimum size: 16)

Related Functions

fmGetAmplifierSerialNumber

USB Device SDK

Programmers Reference Page 89 of 136

fmGetAmplifierSerialNumber

Description

This function retrieves the serial number of the currently selected signal conditioner.

The serial number may contain up to 16 characters, so the array specified in the parameter

should be of at least that length.

Format

void fmGetAmplifierSerialNumber(char *buf)

Arguments

A pointer to a character array to hold the serial number (minimum size: 16)

Related Functions

fmGetAmplifierModelNumber

USB Device SDK

Programmers Reference Page 90 of 136

fmGetAmplifierFirmwareVersion

Description

This function retrieves a string identifying the version of the internal firmware installed in the

currently selected signal conditioner.

The firmware version string may contain up to 16 characters, so the array specified in the

parameter should be of at least that length.

Format

void fmGetAmplifierFirmwareVersion(char *buf)

Arguments

A pointer to a character array to hold the firmware version string (minimum size: 16)

Related Functions

fmGetAmplifierSerialNumber

USB Device SDK

Programmers Reference Page 91 of 136

fmGetAmplifierDate

Description

This function retrieves the last calibration date of the currently selected signal conditioner.

The date string may contain up to 12 characters, so the array specified in the parameter should

be of at least that length.

Format

void fmGetAmplifierDate(char *buf)

Arguments

A pointer to a character array to hold the date (minimum size: 12)

Related Functions

fmGetAmplifierModelNumber
fmGetAmplifierSerialNumber

USB Device SDK

Programmers Reference Page 92 of 136

fmGetGainTable

Description

This function retrieves the gain correction table of the currently selected signal conditioner.

 The gain table is a 24-element array of type float. The array will be retrieved in row, column

order as in the table below. The values represent the accurately calibrated values of each gain

channel and gain level; these will be will be close to but not precisely the same as the nominal

values shown in the table. The calibrated values are used to correct the engineering output

values from the signal conditioner with respect to the internal amplification circuits.

Format

void fmGetGainTable(float *data)

Arguments

A pointer to a 24-element array to contain calibrated gain values:

 Gain Table

Channel 0 1 2 3 4 5

Gain Nominal Values

500 1.0 1.0 1.0 1.0 1.0 1.0

1000 2.0 2.0 2.0 2.0 2.0 2.0

2000 4.0 4.0 4.0 4.0 4.0 4.0

4000 8.0 8.0 8.0 8.0 8.0 8.0

Related Functions

fmSetCurrentGains
fmGetCurrentGains

USB Device SDK

Programmers Reference Page 93 of 136

fmGetExcitationTable

Description

This function retrieves the excitation correction table of the currently selected signal

conditioner.

 The excitation table is an 18-element array of type float. The array will be retrieved in row,

column order as in the table below. The values represent the accurately calibrated values of

each excitation level on each channel; these will be will be close to but not precisely the same

as the nominal values shown in the table. The calibrated values are used to correct the

engineering output values from the signal conditioner with respect to the internal amplification

circuits.

Format

void fmGetExcitationTable(float *data)

Arguments

A pointer to an 18-element array to contain calibrated excitation values:

 Excitation Table

Channel 0 1 2 3 4 5

Excitation Nominal Values

2.5 2.5 2.5 2.5 2.5 2.5 2.5

5.0 5.0 5.0 5.0 5.0 5.0 5.0

10.0 10.0 10.0 10.0 10.0 10.0 10.0

Related Functions

fmSetCurrentExcitations
fmGetCurrentExcitations

USB Device SDK

Programmers Reference Page 94 of 136

fmGetDACGainsTable

Description

This function retrieves the digital to analog converter (DAC) gain correction table for the

currently selected signal conditioner.

The gain correction table is a 6-element array of type float. The array will be retrieved in

channel order as in the table below. The values represent the accurately calibrated values of

analog conversion gain for each channel; these will be will be close to but not precisely the

same as the nominal values shown in the table. The calibrated values are used to correct the

engineering unit analog output values from the signal conditioner with respect to the internal

amplification circuits.

Format

void fmGetDACGainsTable(float *data)

Arguments

A pointer to a 6-element array to contain calibrated analog conversion gain values:

 DAC Gains Table

Channel 0 1 2 3 4 5

 Nominal Values

 -2.49423 -2.49423 -2.49423 -2.49423 -2.49423 -2.49423

Related Functions

fmGetDACOffsetTable
fmSetDACSensitivityTable
fmGetDACSensitivities

USB Device SDK

Programmers Reference Page 95 of 136

fmGetDACOffsetTable

Description

This function retrieves the digital to analog converter (DAC) offset correction table for the

currently selected signal conditioner.

The offset correction table is a 6-element array of type float. The array will be retrieved in

channel order as in the table below. The values represent the accurately calibrated values of

analog conversion zero offset for each channel; these will be will be close to but not precisely

the same as the nominal values shown in the table. The calibrated values are used to correct

the engineering unit analog output values from the signal conditioner with respect to the

internal amplification circuits.

Format

void fmGetDACOffsetTable(float *data)

Arguments

A pointer to a 6-element array to contain calibrated analog conversion offset values:

 DAC Offset Table

Channel 0 1 2 3 4 5

 Nominal Values

 0.0 0.0 0.0 0.0 0.0 0.0

Related Functions

fmGetDACGainsTable
fmSetDACSensitivityTable
fmGetDACSensitivities

USB Device SDK

Programmers Reference Page 96 of 136

fmSetDACSensitivityTable

Description

This function sets the digital to analog conversion (DAC) sensitivity table.

The DAC sensitivity table contains conversion factors, one for each channel. This conversion

factor is used to convert internally calculated digital force and moment values into analog

output volts at a user-defined proportional voltage. The force channel conversions are always

millivolts per pound. The moment channel conversions are always millivolts per inch-pound.

The DAC sensitivity Table is only applied when the analog outputs are set to fully conditioned

mode. These same conversion values or the metric equivalents must be entered in the user

application to convert the analog signal to engineering units within the PC.

Format

void fmSetDACSensitivityTable(float *data)

Arguments

A pointer to a 6-element array containing the DAC sensitivity values, one per channel

Related Functions

fmGetDACSensitivities

USB Device SDK

Programmers Reference Page 97 of 136

fmGetDACSensitivities

Description

This function retrieves the digital to analog conversion (DAC) sensitivity table.

The DAC sensitivity table contains conversion factors, one for each channel. This conversion

factor is used to convert internally calculated digital force and moment values into analog

output volts at a user-defined proportional voltage. The force channel conversions are always

millivolts per pound. The moment channel conversions are always millivolts per inch-pound.

The DAC sensitivity Table is only applied when the analog outputs are set to fully conditioned

mode. These same conversion values or the metric equivalents must be entered in the user

application to convert the analog signal to engineering units within the PC.

Format

void fmGetDACSensitivities(float *data)

Arguments

A pointer to a 6-element array to contain the DAC sensitivity values, one per channel

Related Functions

fmSetDACSensitivityTable

USB Device SDK

Programmers Reference Page 98 of 136

fmGetADRef

 Description

This function retrieves the nominal analog to digital reference voltage value for the currently

selected signal conditioner.

Format

float fmGetADRef(void)

Returns

The nominal reference voltage value for the currently selected signal conditioner

USB Device SDK

Programmers Reference Page 99 of 136

27.0 Platform Calibration Function Definitions

fmSetPlatformDate

Description

This function sets the platform calibration date stored in the currently selected signal

conditioner. This date should reflect the latest calibration of the platform.

The date string may contain up to 12 characters. Any characters beyond that limit will be

ignored.

NOTE: If the signal conditioner is attached to a smart platform, it will overwrite this parameter

with data loaded from the smart platform.

Format

void fmSetPlatformDate (char *buf)

Arguments

A pointer to a character array holding the date (maximum size: 12)

Related Functions

fmGetPlatformDate

USB Device SDK

Programmers Reference Page 100 of 136

fmGetPlatformDate

Description

This function retrieves the platform calibration date stored in the currently selected signal

conditioner.

The date string may contain up to 12 characters, so the array specified in the parameter should

be of at least that length.

Format

void fmGetPlatformDate(char *buf)

Arguments

A pointer to a character array to hold the date (minimum size: 12)

Related Functions

fmSetPlatformDate

USB Device SDK

Programmers Reference Page 101 of 136

fmSetPlatformModelNumber

Description

This function sets the platform model number stored in the currently selected signal

conditioner.

The model number may contain up to 28 characters. Any characters beyond that limit will be

ignored.

NOTE: If the signal conditioner is attached to a smart platform, it will overwrite this parameter

with data loaded from the smart platform.

Format

void fmSetPlatformModelNumber(char *buf)

Arguments

A pointer to a character array holding the model number (maximum size: 28)

Related Functions

fmGetPlatformModelNumber

USB Device SDK

Programmers Reference Page 102 of 136

fmGetPlatformModelNumber

Description

This function retrieves the platform model number stored in the currently selected signal

conditioner.

The platform model number may contain up to 28 characters, so the array specified in the

parameter should be of at least that length.

Format

void fmGetPlatformModelNumber(char *buf)

Arguments

A pointer to a character array to hold the model number (minimum size: 28)

Related Functions

fmSetPlatformModelNumber

USB Device SDK

Programmers Reference Page 103 of 136

fmSetPlatformSerialNumber

Description

This function sets the platform serial number stored in the currently selected signal conditioner.

The serial number may contain up to 16 characters. Any characters beyond that limit will be

ignored.

NOTE: If the signal conditioner is attached to a smart platform, it will overwrite this parameter

with data loaded from the smart platform.

Format

void fmSetPlatformSerialNumber(char *buf)

Arguments

A pointer to a character array holding the serial number (maximum size: 16)

Related Functions

fmGetPlatformSerialNumber

USB Device SDK

Programmers Reference Page 104 of 136

fmGetPlatformSerialNumber

Description

This function retrieves the platform serial number stored in the currently selected signal

conditioner.

The platform serial number may contain up to 16 characters, so the array specified in the

parameter should be of at least that length.

Format

void fmGetPlatformSerialNumber(char *buf)

Arguments

A pointer to a character array to hold the serial number (minimum size: 16)

Related Functions

fmSetPlatformSerialNumber

USB Device SDK

Programmers Reference Page 105 of 136

fmSetPlatformLengthAndWidth

Description

This function sets the platform length and width stored in the currently selected signal

conditioner.

The length and width are stored in text format, 16 characters per field. Any characters beyond

that limit will be ignored. The signal conditioner has no internal use for this information.

NOTE: If the signal conditioner is attached to a smart platform, it will overwrite these

parameters with data loaded from the smart platform.

Format

void fmSetPlatformLengthAndWidth(char *length, char *width)

Arguments

Two pointers to character arrays holding the length and width strings (maximum size: 16)

Related Functions

fmGetPlatformLengthAndWidth

USB Device SDK

Programmers Reference Page 106 of 136

fmGetPlatformLengthAndWidth

Description

This function retrieves the platform length and width stored in the currently selected signal

conditioner.

The length and width are stored in text format, 16 characters per field, so the arrays specified in

the parameters should be of at least that length.

Length and width data are calibrated at the factory in inches (1 inch = 25.4 mm).

Format

void fmGetPlatformLengthAndWidth(char *length, char *width)

Arguments

Two pointers to character arrays to hold the length and width strings (minimum size: 16)

Related Functions

fmSetPlatformLengthAndWidth

USB Device SDK

Programmers Reference Page 107 of 136

fmSetPlatformXYZOffsets

Description

This function sets the X, Y, and Z platform offsets stored in the currently selected signal

conditioner.

Each platform has an electrical center which has a physical location somewhere within the

platform, near the physical center of the platform surface. This electrical center is calibrated at

the factory, and can be used to more accurately define the center of pressure of a force applied

to the force platform. These offsets represent that electrical center location as offset from the

physical platform origin. For more information refer to the platform calibration information

and manual. The signal conditioner has no internal use for these values.

NOTE: If the signal conditioner is attached to a smart platform, it will overwrite these

parameters with data loaded from the smart platform.

Format

void fmSetPlatformXYZOffsets(float *data)

Arguments

A pointer to a 3-element array containing the platform electrical center coordinates:

Array Element 0 1 2

Value X offset Y offset Z offset

Related Functions

fmGetPlatformXYZOffsets

USB Device SDK

Programmers Reference Page 108 of 136

fmGetPlatformXYZOffsets

Description

This function retrieves the X, Y, and Z platform offsets stored in the currently selected signal

conditioner.

Each platform has an electrical center which has a physical location somewhere within the

platform, near the physical center of the platform surface. This electrical center is calibrated at

the factory, and can be used to more accurately define the center of pressure of a force applied

to the force platform. These offsets represent that electrical center location as offset from the

physical platform origin. For more information refer to the platform calibration information

and manual.

The platform offsets are extended with values set in the fmSetPlatformXYZExtensions function.

The extension values are added to the offset values found in the signal conditioner.

Offset data are calibrated at the factory in inches (1 inch = 25.4 mm).

Format

void fmGetPlatformXYZOffsets(float *data)

Arguments

A pointer to a 3-element array to contain the platform electrical center coordinates:

Array Element 0 1 2

Value X offset Y offset Z offset

Related Functions

fmSetPlatformXYZOffsets

fmSetPlatformXYZExtensions

USB Device SDK

Programmers Reference Page 109 of 136

fmSetPlatformXYZExtensions

Description

This function sets the X, Y, and Z platform extension values for the platform associated with the

currently selected signal conditioner.

In many measurement applications additional hardware is attached to the force platform in the

testing laboratory, and it is desirable to take the dimensions of this hardware into account

when calculating centers of pressure and other values derived from raw force and moment

values. The dimensions of such hardware can be set using this function, and these offsets will

then be added to the values retrieved by the fmGetPlatformXYZOffsets function for the

platform associated with the currently selected signal conditioner. The signal conditioner has

no internal use for these values.

Values should be set in inches (1 inch = 25.4 mm), to match the values returned by the

fmGetPlatformXYZOffsets function.

Format

void fmSetPlatformXYZExtensions(float *data)

Arguments

A pointer to a 3-element array containing the platform extension values:

Array Element 0 1 2

Value X extension Y extension Z extension

Related Functions

fmGetPlatformXYZOffsets

fmGetPlatformXYZExtensions

USB Device SDK

Programmers Reference Page 110 of 136

fmGetPlatformXYZExtensions

Description

This function retrieves the X, Y, and Z platform extension values stored for the platform

associated with the currently selected signal conditioner.

Platform extension values are stored in inches (1 inch = 25.4 mm).

Format

void fmGetPlatformXYZExtensions(float *data)

Arguments

A pointer to a 3-element array to contain the platform extension values:

Array Element 0 1 2

Value X extension Y extension Z extension

Related Functions

fmSetPlatformXYZ Extensions

USB Device SDK

Programmers Reference Page 111 of 136

fmSetPlatformCapacity

Description

This function sets the platform capacities stored in the currently selected signal conditioner.

The function requires a 6 element array of type float as shown in the example below. These

parameters are always shipped with the platform calibration, and are provided for

informational use only.

 Platform Capacity Table

Channel Fx Fy Fz Mx My Mz

Units Lb lb Lb In-lb In-lb In-lb

Index 0 1 2 3 4 5

 Nominal Capacity Values for a 1000 lb OR6-7

Capacity 500 500 1000 10000 10000 5000

NOTE: If the signal conditioner is attached to a smart platform, it will overwrite these

parameters with data loaded from the smart platform.

Format

void fmSetPlatformCapacity(float *data)

Arguments

A pointer to a 6-element array containing the platform channel capacities

Related Functions

fmGetPlatformCapacity

USB Device SDK

Programmers Reference Page 112 of 136

fmGetPlatformCapacity

Description

This function retrieves the platform capacities stored in the currently selected signal

conditioner.

The function requires a 6 element array of type float as shown in the example below. These

parameters are always shipped with the platform calibration, and are provided for

informational use only.

Offset data are calibrated at the factory in English units.

 Platform Capacity Table

Channel Fx Fy Fz Mx My Mz

Units Lb lb lb In-lb In-lb In-lb

Index 0 1 2 3 4 5

 Nominal Capacity Values for a 1000 lb OR6-7

Capacity 500 500 1000 10000 10000 5000

Format

void fmGetPlatformCapacity(float *data)

Arguments

A pointer to a 6-element array to contain the platform channel capacities

Related Functions

fmSetPlatformCapacity

USB Device SDK

Programmers Reference Page 113 of 136

fmSetPlatformBridgeResistance

Description

This function sets the bridge resistance array stored in the currently selected signal conditioner.

The function requires a 6 element array of type float as shown in the example below. These

parameters are always shipped with the platform calibration, and are used to calculate

accurate force and moment values in engineering units.

These parameters are stored in the signal conditioner in ohms.

 Platform Capacity Table

Channel Fx Fy Fz Mx My Mz

Units ohms ohms Ohms ohms ohms ohms

Index 0 1 2 3 4 5

 Nominal Bridge Resistance Values for an OR6-7

Bridge
Resistance

700 700 350 700 700 700

NOTE: If the signal conditioner is attached to a smart platform, it will overwrite these

parameters with data loaded from the smart platform.

Format

void fmSetPlatformBridgeResistance(float *data)

Arguments

A pointer to a 6-element array containing the platform bridge resistances

Related Functions

fmGetPlatformBridgeResistance

USB Device SDK

Programmers Reference Page 114 of 136

fmGetPlatformBridgeResistance

Description

This function retrieves the bridge resistance array stored in the currently selected signal

conditioner.

The function requires a 6 element array of type float as shown in the example below. These

parameters are always shipped with the platform calibration, and are used to calculate

accurate force and moment values in engineering units.

These parameters are stored in the signal conditioner in ohms.

 Platform Bridge Resistance Table

Channel Fx Fy Fz Mx My Mz

Units ohms ohms ohms ohms ohms ohms

Index 0 1 2 3 4 5

 Nominal Bridge Resistance Values for an OR6-7

Bridge
Resistance

700 700 350 700 700 700

Format

void fmGetPlatformBridgeResistance(float *data)

Arguments

A pointer to a 6-element array to contain the platform bridge resistances

Related Functions

fmSetPlatformBridgeResistance

USB Device SDK

Programmers Reference Page 115 of 136

fmSetInvertedSensitivityMatrix

Description

This function sets the inverted sensitivity matrix stored in the currently selected signal

conditioner.

The inverted sensitivity matrix is a 36 element array of type float, stored in row, column order

as shown in the example table below. The inverted sensitivity array is used to convert micro

volts to engineering units and eliminate crosstalk.

The English version of the array should be used. This matrix is supplied with every platform

shipped.

 Sample inverted Sensitivity Matrix

Channel 0 1 2 3 4 5

 VFx VFy VFz VMx VMy VMz

 Input to channel i(lb,in-lb) is B(I,j)times the electrical output j(uV,Vex)

 BP 400600-2000

Fx 0.6519 -0.0068 -0.0019 0.0009 -0.0017 -0.0003

Fy 0.0090 0.6515 -0.0037 0.0009 0.0005 0.0010

Fz 0.0018 0.0017 2.5523 -0.0062 0.0001 0.0026

Mx -0.0044 -0.0032 0.0003 12.8281 0.0108 -0.0138

My 0.0725 -0.0032 0.0003 0.0058 10.1358 -0.0140

Mz 0.0649 0.0821 0.0792 0.0123 0.0340 5.4451

NOTE: If the signal conditioner is attached to a smart platform, it will overwrite these

parameters with data loaded from the smart platform.

Format

void fmSetInvertedSensitivityMatrix(float *data)

Arguments

A pointer to a 36-element array containing the platform inverted sensitivity matrix data

Related Functions

fmSetInvertedSensitivityMatrix

USB Device SDK

Programmers Reference Page 116 of 136

fmGetInvertedSensitivityMatrix

Description

This function retrieves the inverted sensitivity matrix stored in the currently selected signal

conditioner.

The inverted sensitivity matrix is a 36 element array of type float, stored in row, column order

as shown in the example table below. The inverted sensitivity array is used to convert micro

volts to engineering units and eliminate crosstalk.

The array is stored in the signal conditioner in English units. A matrix is supplied for every

platform shipped.

 Sample inverted Sensitivity Matrix

Channel 0 1 2 3 4 5

 VFx VFy VFz VMx VMy VMz

 Input to channel i(lb,in-lb) is B(I,j)times the electrical output j(uV,Vex)

 BP 400600-2000

Fx 0.6519 -0.0068 -0.0019 0.0009 -0.0017 -0.0003

Fy 0.0090 0.6515 -0.0037 0.0009 0.0005 0.0010

Fz 0.0018 0.0017 2.5523 -0.0062 0.0001 0.0026

Mx -0.0044 -0.0032 0.0003 12.8281 0.0108 -0.0138

My 0.0725 -0.0032 0.0003 0.0058 10.1358 -0.0140

Mz 0.0649 0.0821 0.0792 0.0123 0.0340 5.4451

Format

void fmGetInvertedSensitivityMatrix(float *data)

Arguments

A pointer to a 36-element array to contain the platform inverted sensitivity matrix data

Related Functions

fmSetInvertedSensitivityMatrix

USB Device SDK

Programmers Reference Page 117 of 136

28.0 Signal Conditioner Hardware Function Definitions

fmSetBlink

 Description

This function tells the currently selected signal conditioner to blink its front panel lamp.

The amber light will blink for ten seconds. This can be useful if there are several signal

conditioners attached with complex wiring and it is necessary to determine which is which.

Note that the front panel lamp will remain in the lit state in the case that a correctly wired force

platform is not attached to the signal conditioner.

Format

void fmSetBlink(void)

USB Device SDK

Programmers Reference Page 118 of 136

fmResetHardware

Description

This function power cycles the currently selected signal conditioner. The signal conditioner will

not lose its USB connection during this process.

Format

void fmResetHardware(void)

Related Functions

fmBroadcastResetSoftware
fmResetSoftware

USB Device SDK

Programmers Reference Page 119 of 136

fmBroadcastResetUSB

Description

This function resets the USB pipes from the PC to the signal conditioner for all connected signal

conditioners.

This function call may be useful if there is a problem with the USB connection of several signal

conditioners. It should not be necessary in normal operation.

Format

void fmBroadcastResetUSB(void)

USB Device SDK

Programmers Reference Page 120 of 136

29.0 Sample Code

The following sample code is all written in the Microsoft Foundation Classes using Visual Studio

2008. To use any DLL functions AMTIUSBDeviceDefinitions.h must be included as a class

header.

#include "AMTIUSBDeviceDefinitions.h"

DLL Initialization Using a Sleep Statement

#include "AMTIUSBDeviceDefinitions.h"

void USBDeviceDlg::InitializeDeviceDLL(void)

{

fmDLLInit();

Sleep(250);

int countdown = 20;

while(fmDLLIsDeviceInitComplete() == 0)

{

Sleep(250);

if (countdown-- <= 0)

{

 // Handle a timeout error here

}

}

ret = fmDLLSetupCheck();

 // If return is not 1 configuration has changed

 // Go to funtion description for more information

ConfigureDataCollection();

}

USB Device SDK

Programmers Reference Page 121 of 136

DLL Initialization Using an MFC timer

#include "AMTIUSBDeviceDefinitions.h"

void USBDeviceDlg::InitializeDeviceDLL(void)

{

fmDLLInit();

TimerID = SetTimer(TimerIDUSBInit, 250, NULL);

}

void USBDeviceDlg::OnTimer(UINT_PTR nIDEvent)

{

int ret;

 int i;

 ret = 0;

 if(nIDEvent == TimerIDUSBInit)

 {

 ret = fmDLLIsDeviceInitComplete();

 // ret = 0 Wait still initializing

 // ret = 1 Finished, No devices found

 // ret = 2 Finished, device found

 if(ret != 0)

{

 KillTimer(TimerIDUSBInit);

 ret = fmDLLSetupCheck();

 // If return is not 1 configuration has changed

 // Go to funtion description for more information

ConfigureDataCollection();

 }

 else

 {

 timerCount++;

 if(timerCount > MAX_TIMER_ITERATIONS)

 {

 KillTimer(TimerIDUSBInit);

 AfxMessageBox("USB DLL Timeout");

 }

 else

 {

 SetTimer(TimerIDUSBInit, 250, NULL);

 }

 }

 }

}

USB Device SDK

Programmers Reference Page 122 of 136

The Acquisition Rate being Broadcast to the Signal Conditioners

#include "AMTIUSBDeviceDefinitions.h"

int acqRate;

acqRate = 1000;

fmBroadcastAcquisitionRate(acqRate);

The Platforms being Zeroed

#include "AMTIUSBDeviceDefinitions.h"

fmBroadcastZero();

Starting Acquisition

#include "AMTIUSBDeviceDefinitions.h"

fmBroadcastStart();

Stopping Acquisition

#include "AMTIUSBDeviceDefinitions.h"

fmBroadcastStop();

USB Device SDK

Programmers Reference Page 123 of 136

An MFC dialog class being setup to do data collection using windows messaging

#include "AMTIUSBDeviceDefinitions.h"

//Standard Data collection settings that should be set
void USBDeviceDlg::ConfigureDataCollection(void)

{

 HWND h_Wnd;

 //Decided to post messages to a window

 fmDLLPostDataReadyMessages(TRUE);

h_Wnd = GetSafeHwnd();

 fmDLLPostWindowMessages((HWND) h_Wnd);

 fmDLLSetUSBPacketSize(512); // Set the packet size to 512

fmBroadcastGenlock(0); // Make sure Genlock is off

fmBroadcastRunMode(0); // Set collection mode to metric

fmBroadcastResetSoftware(); //Apply the settings

Sleep(250);

}

Windows messaging being set up to do data collection

//Setting up the data collection function in the dialog class header message

map to receive widows messages.

Must always use (WM_USER + 108) as an identifier

#define WM_BUFFER_READY (WM_USER + 108) //Add this line

…….

…….

afx_msg void OnPaint();

afx_msg HCURSOR OnQueryDragIcon();

long OnBufferReady(DWORD wParam, long lParam);//Add this line

DECLARE_MESSAGE_MAP()

…..

…….

//Setting up the data collection function in the dialog class main body

message map

…….

…….

ON_BN_CLICKED(IDC_B_START, &CdummygenDlg::OnBnClickedBStart)

 ON_BN_CLICKED(IDC_B_STOP, &CdummygenDlg::OnBnClickedBStop)

 ON_MESSAGE(WM_BUFFER_READY,(LRESULT(AFX_MSG_CALL CWnd::*)(WPARAM,

LPARAM)) OnBufferReady //Add this line

 ON_BN_CLICKED(IDC_B_SHUTDOWN, &CdummygenDlg::OnBnClickedBShutdown)

USB Device SDK

Programmers Reference Page 124 of 136

 ON_BN_CLICKED(IDC_B_BLINK, &CdummygenDlg::OnBnClickedBBlink)

END_MESSAGE_MAP()

…….

……..

Collecting Data When a Windows message is received

// The data collection function received a message indicating data is ready

long USBDeviceDlg::OnBufferReady(DWORD wParam, long lParam)

{

 float *ptr;

 int ret,i;

 CString str,dum;

 //getting the Data

 ret = fmDLLTransferFloatData((float *&)ptr);

 if(ret == 0)

 {

 return 0;

 }

 str = "";

 dum = "";

 for(i = 0;i < 16;i++)

 {

dum.Format("%6.3f, %6.3f, %6.3f, %6.3f, %6.3f, %6.3f, %6.3f,

%6.3f \r\n", ptr[0], ptr[1], ptr[2], ptr[3], ptr[4], ptr[5],

ptr[6], ptr[7]);

 ptr += 8;

 str+= dum;

 }

 UpdateData(TRUE);

 m_Data = str; //Data being copied to the display

 UpdateData(FALSE);

 return 0;

}

USB Device SDK

Programmers Reference Page 125 of 136

User Thread Messaging being set up to do data collection

Sample 4 - This example shows an MFC User thread function being created for data collection
using thread messaging.

//Setting up the data collection function in the user thread header (.h)

//Always use WM_USER + 109 for the message identifier

#define WM_GENFIVE_THREAD_BUFFER_READY (WM_USER + 109)//Add this line

………….

……….

………..

…….

…….

void Cleanup(void);

int SetMessageDestinationWindow(HWND hWnd);

long OnGenDataReadyMsg(DWORD lParem,long rParem); //Add this line

long OnCommandDispatch(DWORD lParem,long rParem);

……..

…….

//Setting up the data collection function in the user thread main body (.cpp)

message map

…………..

……………

BEGIN_MESSAGE_MAP(CGenThread, CWinThread)

 ON_THREAD_MESSAGE(WM_COMMAND_DISPATCH, (void (AFX_MSG_CALL

CWinThread::*)(WPARAM, LPARAM)) OnCommandDispatch)

 ON_THREAD_MESSAGE(WM_KILL_THREAD, (void (AFX_MSG_CALL

CWinThread::*)(WPARAM, LPARAM)) OnKillThread)

 ON_THREAD_MESSAGE(WM_GENFIVE_THREAD_BUFFER_READY, (void (AFX_MSG_CALL

CWinThread::*)(WPARAM, LPARAM)) OnGenDataReadyMsg)//Add this line

END_MESSAGE_MAP()

……………….

…………

USB Device SDK

Programmers Reference Page 126 of 136

Collecting Data When a User Thread message is received

//The user thread data collection function

long CGenThread::OnGenDataReadyMsg(DWORD lParem,long rParem)

{

 float *pSrc;

 float *pSrcA;

//Get a pointer to the data

 ret = fmDLLTransferFloatData(pSrcA);

if(ret == 0)

 {

 return 0;

 }

//Unload the data

 return(0);

}

USB Device SDK

Programmers Reference Page 127 of 136

Downloading Some Parameters

#include "AMTIUSBDeviceDefinitions.h"

int numdevices

int currentGain[6];

int currentExc[6];

float zeroOffset[6];

int cableLen;

for(i = 0; i<6; i++)

{

currentGain[i] = 2; //2000

currentExc[i]= 0; //2.5

zeroOffset[i] = 0.0;

}

numDevices = fmDLLGetDeviceCount();

for(i = 0;i < numDevices;i++)

{

 fmDLLSelectDeviceIndex(i);

 fmSetCurrentExcitations(curentExc);

 fmSetCurrentGains(currentGain);

 fmSetChannelOffsetsTable((float*)zeroOffset);

}

fmSetCableLength(cableLen);

fmResetSoftware();

USB Device SDK

Programmers Reference Page 128 of 136

Retrieving Some Parameters

#include "AMTIUSBDeviceDefinitions.h"

int i;

char len[30];

char width[30];

char model[30];

char serial[30];

char theDate[30];

float lenWdth[2];

float offsets[3];

float sen[36];

float bridgeResis[6];

memset(len,'\0',30);

memset(width,'\0',30);

memset(model,'\0',30);

memset(serial,'\0',30);

memset(theDate,'\0',30);

offsets[0] = 0.0;

offsets[1] = 0.0;

offsets[2] = 0.0;

for(i = 0;i < 6;i++)

{

 bridgeResis[i] = 0.0;

}

for(i =0;i< 36;i++)

{

 sen[i] = 0.0;

}

fmDLLSelectDeviceIndex(0);

fmGetPlatformModelNumber(model);

fmGetPlatformSerialNumber(serial);

fmGetPlatformDate(theDate);

fmGetPlatformLengthAndWidth((char *)len,(char *) width);

fmGetPlatformXYZOffsets(offsets);

fmGetPlatformBridgeResistance(bridgeResis);

fmGetInvertedSensitivityMatrix(sen);

USB Device SDK

Programmers Reference Page 129 of 136

Auto-Ordering the Dataset Platform Order using an MFC timer

#include "AMTIUSBDeviceDefinitions.h"

int oldRunMode;

void USBDeviceDlg::StartPlatformOrdering(void)

{

fmDLLSetDataFormat(0);

oldRunMode = fmDLLGetRunMode();

fmBroadcastRunMode(4);

fmBroadcastPlatformOrderingThreshold(30);

fmBroadcastResetSoftware();

Sleep(1000);

fmBroadcastZero();

Sleep(500);

fmDLLStartPlatformOrdering();

fmBroadcastStart();

TimerID = SetTimer(TimerIDPltfrmOrder, 500, NULL);

}

void USBDeviceDlg::OnTimer(UINT_PTR nIDEvent)

{

if(fmDLLIsPlatformOrderingComplete())

 {

 KillTimer(TimerIDPltfrmOrder);

 fmBroadcastRunMode(oldRunMode);

 fmBroadcastResetSoftware();

 Sleep(500);

 }

 else

 {

 SetTimer(TimerIDPltfrmOrder, 250, NULL);

 }

}

USB Device SDK

Programmers Reference Page 130 of 136

Appendix A – Integration of the AMTI Optima Signal Conditioner into

the USB Device SDK

Introduction

In September 2011 AMTI launched the Optima line of force plate systems introducing an

unparalleled level of accuracy for biomechanics force platform measurement. The following

section covers additions to the USB Device SDK for integrating the Optima line of signal

conditioners.

All third party software modifications to integrate the new Optima signal conditioner will occur

in the signal conditioner initialization section of their code. Data collection procedures remain

exactly the same for Optima signal conditioners as for other AMTI signal conditioners.

The Optima Binary Calibration File

An AMTI binary calibration file (*.bcf), is shipped with every Optima force platform. The

calibration file is too large to store on the platform smart chip and, therefore, has to be written

from the PC to the signal conditioner whenever a new Optima signal conditioner / platform

combination is detected.

Optima binary calibration files should be installed on the PC through the use of the AMTI

System Configuration program. The AMTI System Configuration program is a utility program

which ships with all AMTI USB Devices. It is used to configure both the USB Device DLL and all

AMTI USB devices. When this program encounters a new Optima signal conditioner / platform

combination, it requests the appropriate binary calibration file from the user. It then stores the

calibration file on the PC while simultaneously downloading it to the signal conditioner. If later

the DLL needs the binary file again it can simply retrieve it from the storage location on the PC.

When storing the initial binary calibration file, the AMTI System Configuration program creates

a storage folder and records the folder location in the system registry.

For Windows 7 – 64 the registry location is:

HKEY_CURRENT_CONFIG->SOFTWARE->Wow6432Node ->AMTI->HPS

For Windows XP - 32 the registry location is:

HKEY_CURRENT_CONFIG->SOFTWARE->AMTI->HPS

USB Device SDK

Programmers Reference Page 131 of 136

The current default PC folder location for storing binary calibration files is C:\AMTI\HPS

How the AMTI USB Device DLL Initializes an Optima Signal Conditioner

When an Optima signal conditioner is powered on it queries the connected force platform to

determine if the platform is equipped with smart chip technology. If the platform is so

equipped, the signal conditioner uploads platform identification information, including the

platform serial number. The signal conditioner compares the serial number of the platform to

that of the calibration table last stored in local memory. If the serial numbers match the

process ends; if there is no match the signal conditioner will require the correct calibration file

to be downloaded from the PC.

When the USB Device DLL initializes it detects all connected AMTI USB devices. If an Optima

signal conditioner is detected, the SDK will query the signal conditioner to determine if the

correct platform calibration table is present. If the correct calibration table is not present the

DLL will check the PC registry to obtain the folder location of the Optima calibration files. If the

folder location exists, the DLL will search the folder for the correct binary calibration file (*.bcf).

If the file is found, the DLL will automatically download it to the Optima. The calibration file

download can take up to 15 seconds, meaning the initialization process of the USB Device DLL

can take up to 15 seconds.

There are four new SDK functions associated with Optima technology. If these functions are

not integrated into third party applications, the software will run fine provided the AMTI

System Configuration software was previously used to install the Optima signal conditioners

with the correct binary calibration files. If this has not taken place, depending on

implementation, the potential 15 second file download time could be problematic.

Gen 5 Compatibility

All Gen 5 functions apply to the Optima signal conditioner except for the following:

fmSetPlatformDate fmSetPlatformCapacity
fmSetPlatformModelNumber fmSetPlatformBridgeResistance
fmSetPlatformSerialNumber fmGetInvertedSensitivityMatrix
fmSetPlatformLengthAndWidth fmSetInvertedSensitivityMatrix
fmSetPlatformXYZOffsets
fmGetPlatformXYZOffsets

USB Device SDK

Programmers Reference Page 132 of 136

The Optima signal conditioner doesn’t have as wide a range of acquisition rates as the Gen 5.
The acquisition rates highlighted in orange are common to both the Gen 5 and Optima. Note
that the Gen 5 has three additional high speed rates highlighted in blue.

Acquisition Rates

2000 1800 1500 1200 1000 900 800 600 500 450

400 360 300 250 240 225 200 180 150 125

120 100 90 80 75 60 50 45 40 30

25 20 15 10

Optima Only Functions

The following list of functions applies to the Optima signal conditioner only:

fmBroadcastCheckOptima
fmOptimaGetStatus
fmOptimaDownloadCalFile
fmIsOptimaDownloadComplete

USB Device SDK

Programmers Reference Page 133 of 136

fmBroadcastCheckOptima

Description

This function checks all connected Optima signal conditioners and reports whether they are

ready. It is primarily checking for correct calibration files. If any Optimas are not ready the

function returns the number of Optimas not ready to run and their current device indexes.

The function should be called shortly after fmDLLIsDeviceInitComplete returns success

indicating successful SDK initialization.

Format

long fmBroadcastCheckOptima(long *data)

Arguments

The argument is a pointer to a 16-element array of type long, each element containing the

device index for an Optima signal conditioner that is not ready. The array will only fill as many

elements as indicated in the function return parameter. Call fmDLLSelectDeviceIndex and

fmOptimaGetStatus to determine why any individual Optima are not ready.

Returns

The number of Optima signal conditioners which are not ready - zero if all Optimas are ready

Related Functions

fmDLLIsDeviceInitComplete
fmDLLSelectDeviceIndex
fmOptimaGetStatus

USB Device SDK

Programmers Reference Page 134 of 136

fmOptimaGetStatus

Description

The function fmOptimaGetStatus should be called after fmBroadcastCheckOptima to check the

status code of any Optima signal conditioner that is not ready.

Format

long fmOptimaGetStatus(void)

Returns

The status of the currently selected device:

0: The Signal conditioner is a Gen 5
1: The signal conditioner is an Optima and the calibration file is correct
2: Bad CRC check – the calibration file is corrupted
3: The calibration file does not match the platform
4: The Optima signal conditioner is using factory default settings, not a calibration file
5: The Optima signal conditioner is not attached to an Optima platform

Related Functions

fmBroadcastCheckOptima
fmDLLSelectDeviceIndex

USB Device SDK

Programmers Reference Page 135 of 136

fmOptimaDownloadCalFile

Description

This function reads the system registry to determine the folder in which Optima binary

calibration files (*.bcf) are stored on the PC. It then searches the folder for the binary

calibration file required for the currently selected Optima signal conditioner. If the file is found,

the function will begin the process of downloading the calibration file to the signal conditioner.

It can take up to 15 seconds to download a binary calibration file from the PC to the signal

conditioner. When a binary calibration file is downloaded it’s written directly to the flash; it

does not need to be saved with any other DLL call.

Format

long fmOptimaDownloadCalFile(BOOL mode)

Arguments

Currently not utilized - always set to 1

Returns

The status of the download initialization:

0: The file download has begun
1: There are no connected devices
2: The connected device is not an Optima signal conditioner
3: No binary calibration file (*.bcf) was found

Related Functions

fmIsOptimaDownloadComplete
fmDLLSelectDeviceIndex

USB Device SDK

Programmers Reference Page 136 of 136

fmIsOptimaDownloadComplete

Description

This function should be called to determine if the binary calibration file (*.bcf) download which

began with a call to fmOptimaDownloadCalFile has completed.

Format

long fmIsOptimaDownloadComplete(void)

Returns

The status of the download operation:

0: File download in process
1: File download is complete
2: File not found on PC
3: File version not supported
4: Bad CRC Check
5: Other

Related Functions

fmDLLSelectDeviceIndex
fmOptimaDownloadCalFile

